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BERTRAND COMPETITION UNDER UNCERTAINTY*
MAARTEN JANSSENT AND ErRIC RASMUSENG

We look at a Bertrand model in which each firm may be inactive with
a known probability, so the number of active firms is uncertain. The
model has a mixed-strategy equilibrium, in which industry profits are
positive and decline with the number of firms, the same features which
make the Cournot model attractive. Unlike those in a Cournot model
with similar uncertainty, Bertrand profits always increase in the
probability that firms are inactive. Profits decline more sharply than in
the Cournot model, the pattern found empirically in Bresnahan and
Reiss [1991].

I. INTRODUCTION

SUPPOSE A CARPENTER is asked by a homeowner to submit a tender for
renovating a house. He considers it very likely that if the homeowner has
asked for tenders from other carpenters then the lowest price will win the
job. He also knows there is a chance that the homeowner has not found
any other carpenter free to do the work this month and will give the job to
him even if his tender is rather high. What price will he offer the
homeowner? It will certainly be above marginal cost. We model this
situation by having the carpenter know that with some probability he is a
monopolist who can charge the monopoly price and that with some
probability he does face price competition. We will show that there exists
an equilibrium in mixed strategies and that expected profits are positive
and rising with concentration. Moreover, the model does reasonably well
in explaining the empirical results of Bresnahan and Reiss [1991] on Aow
industry profits increase.

The paper is related to several different literatures. A variety of models,
of which Salop and Stiglitz [1977] and Varian [1980] are early examples,
have shown that competitive markets can have price dispersion even in
equilibrium. Different firms charge different prices for an identical good
because of heterogeneous consumer search, some consumers observing
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12 MAARTEN JANSSEN AND ERIC RASMUSEN

more prices than others. The closest of these to the present model is
Burdett and Judd [1983], in which some consumers might observe one
price, some two prices, some three, and so forth. The number of
searches is endogenous, and in equilibrium a given consumer observes
only one or two prices. Our firms, however, are strategic, not
competitive, and a firm believes there is a fixed probability any of its
competitors is active. Therefore, in our model, when the number of
firms becomes larger, a seller knows that the probability that at least
one other firm is actively competing with it has become closer to one,
which drives prices closer to marginal cost, whereas in Burdett and Judd
price dispersion and positive industry profits persist as the number of
firms becomes infinite.'

II. THE MODEL

Let there be N firms and a homogeneous good. Before deciding on price,
a firm does not know how many other firms are active in the market. The
probability a given firm is active is o, where 0 < « < 1. If & = 1, the market
is described by the Bertrand model of price competition, and the
equilibrium price equals marginal cost. If & = 0 our firm is assured of being
a monopolist and charges the monopoly price. For simplicity, we will
assume that there is one consumer, who buys at most one unit, and his
maximum willingness to pay for the good is v. Marginal cost is normalized
to 0.

There is no symmetric Nash equilibrium with any firm putting positive
probability on choosing any particular price. Suppose Firm 1 charges p/
with positive probability 0, rather than mixing over a continuous range of
prices and putting infinitesimal probability on each. Putting positive
probability on p’ = 0 is not profit maximizing, because if the firm charged
the monopoly price of v instead on those occasions it would have an
expected payoff of (1 — )" 'v, so let us focus on p' > 0.

If p’ > 0, and two firms are putting positive probability # on p’, then with
positive probability @ they will both charge p' and will each have a
contribution proportional to (6°/2)(p’ — 0) towards their expected profits.
Firm 1 could increase its expected profit, however, by deviating to putting
zero weight on p’ and positive weight on p" — ¢, for sufficiently small ¢. This
would replace the expected profit of (6°/2)(p’ — 0) with the larger expected

! Also related are Spulber [1995] and Baye and Morgan [1999], which also address positive
profits in oligopoly. Spulber analyzes Bertrand competition with private costs. Baye and
Morgan [1999] show that if firms only choose prices to reach within epsilon of their maximal
profit, then a mixed-strategy equilibrium exists in which profits are positive and large
compared to the value of epsilon.

@ Blackwell Publishers Ltd. 2002.
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BERTRAND COMPETITION UNDER UNCERTAINTY 13

profit of (0°)(p' —¢). Thus, it cannot be that both firms put positive
probability on any p’ in equilibrium.

What if only Firm 1 chooses p' with positive probability? Then prices
in a neighborhood around p’ are not chosen with a strictly positive
probability mass. We distinguish two possibilities. First, there exists a
neighborhood [p’, x) with x = p' such that the probability that any firm
charges a price in the neighborhood equals 0. This cannot be an
equilibrium, as Firm 1 can increase p’ without reducing its chance of
winning the customer. Second, there exists a neighborhood (p/, x) with
p' < x such that the probability that at least one other firm charges a price
in the whole neighborhood is strictly positive. This can also not be part
of an equilibrium, however, as one of the other firms has incentive to shift
probability mass from prices just above p’ to prices just below it. Hence,
there cannot be any equilibrium in which only one firm puts strictly
positive probability on any single price either, which is what we had to
show.

Note, too, that the support over which a firm mixes in equilibrium is
connected. Suppose Firm 1 randomized over an unconnected support
including [f,,7,] and [f,, y,]. The optimal response of Firm 2 (in mixed
strategies) would not include prices in [y,, f,]. There exists, however, an
¢ = 0 such that Firm 1 will not be indifferent between setting a price of
7, — € and setting a price of f, + ¢, which is a necessary condition for Firm
| to mix over [f,, y,] and [f,, 7,].

The equilibrium mixed strategies thus have a convex support. Let F(p;)
be the probability that firm i charges a price smaller than p,. Firm i’s
expected payoff from p, when all other firms use F(p,) is

i (N—1 . o
W reo) = (N a0t - o,

because the probability exactly N —k — 1 of the other N —1 firms are
active equals

2) (Nk_ l)(l — o)V

Firm i’s expected payoff when N — k — 1 firms are active and it charges p;
equals p; times the probability each of other firm charges more than p;:
(1 — F(p)™ * 'p,, leading to expression (2).

Applying a standard result of the Binomial Theorem, equation (1) can
be rewritten as

3) n(pi. F(p)) = [1 — «F(p)I™ ' ps.

In equilibrium, firm i must be indifferent between all pure strategies in
the support of the mixed strategy. Hence, on some interval of prices the
derivative of expression (3) with respect to p; is zero, and

@ Blackwell Publishers Ltd. 2002.
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14 MAARTEN JANSSEN AND ERIC RASMUSEN
“4) [1—aF(p)]" ' — (N — D[ —aF(p)]" *af (p)p; = 0,
or

(5) I —aF(p) — (N —1)f(p)p; = 0.

where [ is the density associated with cumulative distribution function F.
It is straightforward to show that the solution to equation (5) is

L= (1= a)(v )

(6) F(p) = . ;

for (1 —a)" 'v < p; = v. Result (6) implies a unique symmetric equilibrium
with compact support.

Proposition 1. The unique symmetric equilibrium of the Bertrand model
with an uncertain number of competitors is in mixed strategies and the
distribution function of a player’s strategy is

0 Jorp=(1—0)" v
_ 1 —(1 —¢ N-1/Z
(7) F(p) = ( :)( ‘/’:") Jor(1—a) 'o<p <o
1 Jor p; = v

It can be easily verified that as N increases, each firm chooses relatively
low prices with higher probability. As N becomes large, the cumulative
density function approaches 1 for all values of p that are strictly positive.
Of course, the equilibrium price under perfect competition is also equal to
0. The perfectly competitive outcome can be regarded as the limit case of
the present model when the number of firms becomes very large. The
intuition is straightforward. As the number of potential competitors
increases, the probability of at least one other firm actively producing the
same product rises. With greater probability of competition, the firm
reduces its prices. In the limit, a firm is extremely likely to have at least
one active competitor. Standard Bertrand competition comes into effect
and each firm charges a price equal to marginal cost.

Expected profit for one firm can be found using the pure strategy profit
from charging p = v. Since the firm is active with probability «, that profit
is

(8) r=o(l—o)" v

Note that individual profit is declining in N and its sum, industry profit,
is equal to?

2 Note that although the profits of the different firms are not independent, the expected
profits are, so this summation is legitimate.

@ Blackwell Publishers Ltd. 2002.
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BERTRAND COMPETITION UNDER UNCERTAINTY 15
9) No(l — o) .
Let I1, denote expected industry profit under Bertrand competition of

this kind given that at least one firm is active. The profit in equation (9)
can be written as

(10) Zn,-:N:x(l—sc)N =01 —=2)"0)+[1 — (1 —x)")I1,.
yielding

No(l — o)™
(11) n,,:laf(lii)f.

To see how industry profit changes with N, note that after some
manipulation,

dr,

(12) WZ[

(1 —(1 -0+ Nlog(l —a)
(1= ="

][a(l —a)" o).

Derivative (12) is well-defined, even though only integer values of N
have an economic interpretation. Its sign is the same as the sign of

(13) 1 — (1 —a)" + Nlog(l — ).

For N =1, expression (13) becomes o + log(l — &), which is negative
because o < 1. For larger N, expression (13) becomes even more negative,
because its derivative with respect to N is —(1 —a)"log(l —a)+
log(1 — o) = log(l — o)1 — (1 — )] < 0. Thus,

dr,

7 0,
AN ~

(14)

and profits fall as the number of firms increases.

We can show more: profits are convexly decreasing in the number of
firms in the industry. The second derivative d°I1,/dN* is derived from (12),
which can be rewritten as

dI1, y Q=)' (1 =)V "'Nlog(l —a)
—— =

(13) dN T 1= =" [1—(1 -

The derivative of expression (15) is
@ Blackwell Publishers Ltd. 2002.
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16 MAARTEN JANSSEN AND ERIC RASMUSEN

(16) d*I1,/dN?

(1 —o)¥ 'Nlog’(1 —o)[1 —2(1 — 2)"]
_ ] =0 og(l — o) | (1 — o™ +2(1 — ) —2(1 —
(1= =" n—1-ao
_gpfp (=" Togll —) | (1 = 0" Nlog'(l a1 — (1 —afNJI
-1 -o)"F I—(—-o)T
(1—o)" 'log(1 —2) [, Nlog(l —o)[l1+(1 —)"]
= 2 ov.

-1 - I—(1—o)"

The first term of expression (16) is negative because log(1 — «) is negative.
The second term has the same sign as

(17) 2—2(1 —a)" + Nlog(l —a)[1 + (1 —a)"].

We will show that expression (17) is also negative for all N and all
o € (0, 1). Suppose N = 1. We can define f(x) = 20 + (2 — o) log(1 — o). It
is easy to see that f(0) = f'(0) = 0 and that f"(x) = —(x/(1 — «)*), which is
strictly negative for all « > 0. Hence, for all « € (0, 1), f(x) < 0.

For fixed «,

(18) g(N)=2—2(1 —a)" + Nlog(l —a)[1 + (1 — a)"].
It can be shown that ¢'(N) has the sign of

(19) (1—o)"—1—-(1—a)"Nlog(l — )

and that ¢"(N) has the sign of

(20) — N(1 — )" log*(1 — ).

As g(1), g'(1)., and ¢'(N) are strictly negative, we can conclude that
expression (17) is negative, so that

2
(21) (f.wn; = 0.

It is not difficult to generalize the analysis and consider more general
demand functions, which we denote by D(p). In the working paper version
of the present article (Janssen and Rasmusen [2000]) we show that if
pD(p) is increasing and continuously differentiable in p for p < p,. where
p, 18 the monopoly price, then (for N =2) the mixed strategy price
distribution is given by
@ Blackwell Publishers Ltd. 2002.
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BERTRAND COMPETITION UNDER UNCERTAINTY 17
0 ifp=p
1 (1 —)p,D(p)] .
@)  Fp)= —[1—# i p<p<pa
o pD(p) T
1 if p> P

for some p. Moreover, industry profits may be calculated as above and
equal (for general N)

o Nd(l _a)N ]me(PM)
N 1—(1—a)

(23) I,

The working paper version also explores ways in which the number of
firms in the industry may be made endogenous.

1II. COMPARING BERTRAND AND COURNOT

We will now compare the Bertrand and Cournot models under un-
certainty. We will assume that «, the probability of activity, is a constant,
independent of N.> To make the comparison clearer, we will use linear
demand, P(Z.L q;) —a—»b Z;L ¢;. The monopoly price equals a/2 and the
quantity demanded is a/2b at that price. Define ¢(p) as the demand facing
a monopolist at a price of p, so g(p) = (a/b) — (p/b).

Applying equation (22) to the case of linear demand, industry profits
in the Bertrand model with uncertainty are

Ne(l — o) 'p,D(p,) No(l—o)* 'S
1 —(1—a)" I G

(24) nberm:nd =

Adding uncertainty eliminates the discontinuous behavior of the original
Bertrand model. Profits are always positive, but they fall whenever the
number of firms or the probability of more firms being active increases.
Figure 1 shows this for a particular numerical example.

Firm i’s expected profit in a Cournot equilibrium under uncertainty is,
if each other firm chooses output g*,

N-1

N-—1 ) )
@) )= Z( f )(l — 2 plg + (N — 1 - g )la,

j=0

Substituting the demand function, differentiating with respect to g;, setting
q" =gq;, and solving for ¢" yields the equilibrium expected Cournot
industry profit conditional upon one firm being active, equation (26).

*This is an assumption some people question. If a firm becomes inactive because it sells
out its capacity, for example, it may be that many small firms cach have a bigger chance of
running out of capacity for given demand than two large firms would.

@ Blackwell Publishers Ltd. 2002.

sadIe s$900Y UdQ 04 3dadxa ‘payswiad Jou AL SI UOINGUISIP pue 3sn-ay “[2202/50/L0] UO -UBIA 3eHsIaAIun Ag “wodAs|im Aleiqiauluc//:sdny woly papeojumod ‘0 ‘s002 ‘LS¥9.91L



18 MAARTEN JANSSEN AND ERIC RASMUSEN
2500 a =0
Industry
Profit 2000
T o =.1
b 1500
1000 a=.2
500
o =.4
olo =1
1 (no 2 3 4 5 6 7
uncertainty) Number of Firms (N)
Figure 1

Bertrand Profits For Different Probabilities of Activity, o, and Numbers of Firms, N

(from equation (24), a = 100, b = 1, conditional on at least one firm being active; « =0 is
the event that one firm is active and the expected number of other firms is zero)

Figure 2 shows profit for different degrees of activity and concentration
using the same numerical parameters as in Figure 1.

a*aN
b1 — (1 —a)"][2+ (N — D

Figure 2 shows that depending on the number of firms in the industry,
uncertainty can either increase or reduce Cournot profits, but it does not
radically change the equilibrium. Under Cournot competition, a firm
expands its output when it expects fewer rivals to be helping push down
the price and the net effect on expected industry output is unclear.

Using profit equations (24) and (26), the ratio of industry profits under
Bertrand and Cournot competition is decreasing in both N and a:

@7 Dsewaa _ () _ g0 '[l+§(N— 1)]2,

I1 Cournot

(2 6) I Cournot —

which can be shown to be both decreasing in N and «. Figure 3 shows
the outcomes for different degrees of concentration under Cournot and
Bertrand behavior when o = (.8.

All the curves in Figures 1 through 3 have convex shapes, but the
curvatures differ. Figure 3 show that profits decline much more rapidly in
Bertrand than in Cournot. Bertrand profits fall from the monopoly level of
2,500 to duopoly profits of 833, triopoly profits of 242, and low levels
thereafter, whereas Cournot profits decline at a steadier rate. This is
reminiscent of the empirical finding of Bresnahan and Reiss [1991], who
analyzed markets in small towns. An example will illustrate their method.
If a town is very small—say, 500 people—it will have no dentist since even
a monopolist dentist incurs a fixed cost and could not make a profit. If it
@ Blackwell Publishers Ltd. 2002.
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BERTRAND COMPETITION UNDER UNCERTAINTY 19
Industry
Profit 2500 a =0
("
Cournot 2000 a=.,1
oa=.2
1500 a=.4
o=.8
1000 a=.9
o =1
(no
500 uncertainty)
0 I
1 2 3 4 5 g

7

Number of Firms (N)
Figure 2

Cournot Profits For Different Probabilities of Activity, o, and Numbers of Firms, N

(from equation (25), a =100, b =1, conditional on at least one firm being active and on
Ng* not being so large as to drive the price to zero)

Industry  25°°
Profit
2000
1500 Cournct a=1
(no
1000 uncertainty)
Bresnahan- Cournot o=.8
500 Reliss
Bertracll"d o= able 3}
(ne 1 2 3 4 S P >
uncertainty) Number of Firms (N)

Figure 3
Bertrand and Cournot Profits

grows to 800 people, it will have one dentist, since monopoly revenues
exceed the fixed cost. If the town grows to 1,600 people, it will still have
only one dentist, because entry by the second dentist would not just split
the industry profits, but reduce them. Bresnahan and Reiss used this
approach to estimate the thresholds s; for entry in small markets for a
number of industries. Table 1 shows these thresholds in thousands of
inhabitants per firm.” Table 2 rescales the same numbers to be very
roughly comparable with the numerical example used earlier in this

“Table 1 is calculated from Table SA of Bresnahan and Reiss [1991]. The entry of 0.79 in
the second row of their original paper is a mistake and should be 1.09, and their Figure 3
illustrates s,/ss, not the ss/s; in the legend.

@ Blackwell Publishers Ltd. 2002.
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20 MAARTEN JANSSEN AND ERIC RASMUSEN

TasLE 1
BrESNAHAN-REISS ENTRY THRESHOLDS 5.0 ORIGINAL (1,0008 OF INHABITANTS)

Number of Firms, N 1 2 3 4 5

Doctors 0.88 1.75 1.93 1.93 1.83

Dentists 0.71 1.27 1.39 1.36 1.28

Druggists 0.53 1.06 1.68 1.92 1.88

Plumbers 1.43 1.51 1.51 1.55 1.49

Tire Dealers 0.49 0.89 1.14 1.19 1.22
Tasre 11

BrESNAHAN-REISS ENTRY THRESHOLDS: RESCALED AND ROUNDED (25(s, — 5))/(s,, — 5,)

Number of Firms, N 1 2 3 4 5
Doctors 2500 430 0 0 0
Dentists 2500 440 0 0 0
Druggists 2500 1550 430 0 0
Plumbers 2500 830 830 0 0
Tire Dealers 2500 1130 270 100 0
Average 2500 960 230 20 0

paper.” The rescaling is somewhat arbitrary, since the theory of Bresnahan
and Reiss is that some quasi-rents remain to cover fixed cost even when
the minimum scale for entry flattens out, but it creates a comparison
measure for how the intensity of competition changes with the number of
firms.

What is significant is how profits flatten out. Full-fledged competition
kicks in quickly, so going from one firm to two is much more important
than from two to three. This matches the Bertrand model with uncertainty
very well but is inconsistent with the Cournot model.®

IV. CONCLUDING REMARKS

The Bertrand model with uncertainty about the number of competitors is
simple, but its properties are interesting and useful. The extreme transition
in standard Bertrand from monopoly to competition disappears. Expected
profits are positive, but decline with the number of firms in the industry,

Table 2’s rescaling uses the following procedure. Define the monopoly level of profits in
an industry to be 2,500, and the competitive level to be 0. Assume that when s; reaches its
maximum level s, over [1,5], the competitive level of profits is reached and any further
changes are measurement error. Apply the conversion formula s = (25(s,, — 5,))/(s,, — %), and
Table 2 results.

®We do not argue that the Bertrand model with uncertainty is the only model that may
explain the data presented. The exponential decline of industry profits is nonetheless nicely
captured by it.

@ Blackwell Publishers Ltd. 2002.

sadIe s$900Y UdQ 04 3dadxa ‘payuwiad Jou AdL3S SI UOINGUISIP pue 3sn-3Y “[2202/50/L0] UO -UBIA 3eHsIaAIun Ag “wodAs|im Aleiqiauljuc//:sdny woly papeojumod ‘0§ ‘€002 ‘LS¥9.91L



BERTRAND COMPETITION UNDER UNCERTAINTY 21

and decline in a way that empirical work suggest is realistic. The model
is useful both as a simple description of oligopoly and as a building block
for more complex models, as in Gwin [1997] and Janssen and Van Reeven
[1998].

REFERENCES

Baye, M. and Morgan, J., 1999, ‘Epsilon Equilibria in Bertrand Games, Theory
and Experimental Evidence’, Working Paper, Indiana University, Kelley School,
Dept. of Business Economics and Public Policy, January 1999.

Bresnahan, T. and Reiss, P., 1991, ‘Entry and Competition in Concentrated
Markets’, Journal of Political Economy, 99, pp. 977-1009.

Burdett, K. and Judd, K., 1983, *Equilibrium Price Dispersion’, Econometrica, 51,
pp. 981-996.

Gwin, C., 1997, ‘Special Pricing Agreements as Vertical Restraints’, in Three
Common Business Practices as Reponses to Asymmetric Information Problems,
Ph.D. Dissertation, Indiana University School of Business, July 1997.

Janssen, M. and Rasmusen, E., 2000, ‘Bertrand Competition Under Uncertainty’,
Working Paper, May 12, 2000, http://Php.Indiana.edu/erasmuse/papers/
bertrand.pdf (February 19, 2001).

Janssen, M. and Van Reeven, P., 1998, ‘Market Prices and Illegal Practices’,
International Review of Law and Economics , 18, pp. 51-60.

Salop, S. and Stiglitz, J., 1977, “Bargains and Ripoffs; A Model of Monopolistically
Competitive Price Dispersion’, Review of Economic Studies, 44, pp. 493-510.

Spulber, D., 1995, ‘Bertrand Competition When Rivals’ Costs Are Unknown’,
Journal of Industrial Economics, 43, pp. 1-11.

Varian, H., 1980, ‘A Model of Sales’., American Economic Review, 70, pp.
651-659. “Erratum’, June 1981.

@ Blackwell Publishers Ltd. 2002.

sadIe s$900Y UdQ 04 3dadxa ‘paypwiad Jou AL SI UOINGUISIP pue 3sn-ay “[2202/50/L0] UO -UBIA 3eHsIaAlun Ag “wod As|im Aleiqiauljuc//:sdny woly papeojumod ‘0§ ‘s002 ‘LS¥9.91L



