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Abstract. We investigate the nature of trading and sorting induced by the dynamic price
mechanism in a competitive durable good market with adverse selection and exogenous
entry of traders over time. The model is a dynamic version of Akerlof (1970). Identical
cohorts of durable goods, whose quality is known only to potential sellers, enter the
market over time. We show that there exists a cyclical equilibrium where all goods are
traded within a finite number of periods after entry. Market failure is reflected in the
length of waiting time before trade. The model also provides an explanation of market
fluctuations. JEL classification: D82

A propos des marchés de biens durables quand il v a entrée de nouveaux commergants el
selection adverse. Les auteurs analysent la nature du commerce et du triage engendrés
par le mecanisme dynamique des prix dans un marché concurrentiel de biens durables
quand il y a sélection adverse et entrée exogéne de nouveaux commergants dans le
temps. Ce modele est une version dynamique du modele d” Akerlof (1970). Des cohortes
identiques de biens durables, dont la qualité est connue seulement des vendeurs poten-
tiels, arrivent sur le marché dans le temps. Il semble qu’il y ait plus de commerce actif
que ce qui est prévu par un modele statique. En particulier, on montre qu’il existe un
equilibre cyclique ou tous les biens sont transiges a l'intérieur d’'un nombre fini de
periodes apres leur arrivage et que, 4 chaque phase du cycle, I'éventail de qualite des
biens transigeés s’accroit. Les commergants qui transigent des produits de plus haute
qualite attendent plus longtemps et I'imperfection du marché se traduit par la longueur
de temps d’attente avant la transaction. Le modéle fournit aussi une explication des
fluctuations du marche.
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Durable goods markets 553

1. Introduction

A fundamental problem of resource allocation in competitive markets is the
difficulty of conducting potentially gainful trade when some traders have
private information about certain characteristics that affect the utility from
trading. The pioneering paper by Akerlof (1970) illustrated this in the context
of a static market for used goods where the quality of goods is known only to
potential sellers and as a result, higher-quality goods cannot be traded (see also
Wilson 1979). This adverse selection (or ‘lemons’) problem occurs in a wide
range of markets where traders are asymmetrically informed and have correl-
ated valuations such as markets for insurance (automobile and health insur-
ance);' labour (see Greenwald 1986); financial assets (credit) (see, e.g., Spulber
1999, chap. 8); and even the market for thoroughbred yearlings (horses) (see,
e.g., Chezum and Wimmer 1997).

A large number of these markets involve trading in durable goods or assets.
In such markets, traders may wait before they trade thereby creating variations
in the distribution of types of traders over time. This introduces the possibility
that the dynamic price system can induce sorting by giving incentives to
existing agents with different private information to trade in different time
periods. However, new traders may enter the market over time. Entry of new
agents with private information can increase the extent of incomplete informa-
tion in the market. Our main goal in this paper is to understand the extent to
which the competitive price system can, by itself, act as a sorting mechanism
despite the entry of new traders.

Empirically, pure adverse selection effects have not been frequently
‘observed’, and markets characterized by asymmetric information do appear
to exhibit fairly active trading (see, e.g., Bond 1982, 1984). One of the main
reasons behind this is the existence of institutional arrangements and technol-
ogies that generate incentives for traders to take actions that modify the
information structure in the market. Informed agents may signal their private
information through observable actions and uninformed agents may develop
mechanisms to screen or distinguish informed agents with differing informa-
tion.2 Our paper shows that even when there are no other institutions or
technologies available for agents to undertake screening or signalling activities,
and even when new traders with private information enter the market over
time, the dynamic price mechanism can ensure a high volume of trading —
certainly higher than that predicted by static models.”

1 Dionnec and Doherty (1994) give a literature survey on insurance and adverse sclection.

2 For cxample, in markets for used cars, the introduction of systems of guarantecs and
certification intermediaries (Biglaiser and Friedman (1999) and Lizzeri (1999)) can reduce the
extent of the ‘lemons’ problem.

3 For an analysis of constrained efficicncy of static competitive markets for ‘lemons,” sce Bigelow
(1990) and Gale (1992, 1996).
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Recently, a growing literature on used durable goods markets has brought
out the role of time and the interaction between ‘primary’ and ‘secondary’
markets in resolving the ‘lemons’ problem. In particular, when one takes into
account how the market for new goods influences the characteristics of agents
who choose to trade in used goods markets, one can explain why used goods
markets appear to be much more active than what is predicted by the Akerlof
model. Thus, Hendel and Lizzeri (1999) have argued that used car sellers are
likely to be higher-valuation buyers who are eager to buy new cars — they are
more sensitive to quality and have a high opportunity cost of holding on to a
lemon — and this eliminates much of the adverse selection problem in the
resale market (see also Anderson and Ginsburgh 1994). Similarly, Guha and
Waldman (1997), Hendel and Lizzeri (2002), and Waldman (1999) have
emphasized the role of leasing (rather than selling) in the market for new durable
goods in reducing the informational asymmetry in the used goods market.

Our explanation of why markets with asymmetric information can exhibit
fairly active trading is qualitatively different and complements the literature
mentioned above. Instead of focusing on inter-market interaction, our analysis
is confined to the properties of the dynamic price mechanism within a given
market. This also means that we specify the sets of traders and their characteristics
exogenously and study the functioning of the competitive market mechanism for
any such given specification. In this context, it is important to point out that used
goods markets are not the only markets subject to the ‘lemons problem.” In other
markets, such as those for long-term insurance, labour contracts, or financial
assets, interactions between ‘primary’ and ‘secondary’ markets are less important.

Our central concern in this paper is the same as that in Akerlof (1970) and
Wilson (1979). The framework adopted is a natural extension of the static
model analysed in these papers to a dynamic setting with entry. In particular,
we consider a competitive market for a durable good where potential sellers are
privately informed about the quality of the goods they are endowed with. In
each period, a cohort of sellers of equal size and with an identical distribution
of quality enters the market. The distribution of quality is uniform within each
cohort. Buyers are identical, have unit demand, and for any given quality, a
buyer’s willingness to pay exceeds the reservation price of a seller for that
quality. As buyers do not know the quality, their willingness to pay is their
expected valuation of goods offered for sale in that period.* For simplicity, we
assume that there are more buyers than sellers in each period, so that in
equilibrium, prices equal the expected valuation of buyers and all buyers
earn zero surplus. Once traded, goods are not resold in the same market.’

4 Qur analysis bears some resemblance to that by Sobel (1991) of a durable goods monopoly
where new cohorts of consumers enter the market over time. Unlike our framework, there is no
corrclation between the valuations of buyers and scllers in his model.

5 For an analysis of dynamic Walrasian markets with complete information and centry of traders
over time, sce Wooders (1998).
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The static version of this model is simply the Akerlof-Wilson model; as is
well known, the unique equilibrium outcome in this case is that only a certain
low range of quality is traded in the market; the buyers’ valuation of the
average quality in this range (the price) exactly matches the seller’s reservation
price for the highest quality traded. The infinitely repeated version of this
outcome, where the same qualities are traded in every period (while higher-
quality goods remain unsold forever) is also an equilibrium in our dynamic
model. In fact, it is the unique stationary equilibrium (and the only one where
prices and average quality traded are monotonic over time).

There are, however, other equilibria with more interesting properties —
where prices and average quality traded fluctuate over time. In all such
equilibria, the range of quality that is eventually traded in the market exceeds
that in the stationary (static) outcome. Within each cohort of entrants, the
owner of a good with lower quality trades earlier, owners of higher-quality
goods wait longer. In the static Akerlof-Wilson model, the adverse selection
problem manifests itself in the fact that relatively high-quality goods cannot be
traded despite the potential gains from trade. In the dynamic market for
durable goods, the lemons problem may manifest itself in the fact that sellers
with relatively high-quality goods need to wait longer in order to trade.®

We prove the existence of a cyclical equilibrium where every potential seller
entering the market trades within a certain finite number of periods after
entering the market. On the equilibrium path, prices and the range of quality
traded increase until all potentially tradable goods (including those of the
highest possible quality) are traded in a particular period. The process repeats
from the next period onwards. In this equilibrium, market inefficiency arises
only because sellers with goods of higher quality must wait. We provide
examples of other cyclical equilibria where prices and the range of quality
traded are non-monotonic within each cycle and also those where the top-
quality goods are never traded, though the range of qualities traded is better
than in the static outcome.’

There are three important factors determining market dynamics in all the
non-stationary equilibria of our model. First, once a certain range of quality is
traded, only sellers of higher-quality goods are left in the market, improving

6 There arc situations in which the fact that a scller has waited for a long time indicates low rather
than high quality. This is true, for example, when buyers can inspect quality: (high) valuation
buyers are more likely to inspect and sclect relatively high-quality houses, leaving unsold goods
of relatively low quality for later periods (Taylor 1999; Vettas 1997). As stated carlicr, our
model is designed to understand the nature of the lemons problem, so we do not allow for any
technology that can directly modify the information structure.

7 A follow-up paper by Janssen and Karamychev (2002) extends the result about greater volume
of trading in a dynamic sctting to a more general class of probability distributions. Confining
attention to the uniform distribution case allows us to establish a very specific type of dynamic
cquilibrium (which is also simple and intuitive) viz., onc where the range of quality expands
over time until all goods in the market arc sold. We are also able to provide a much tighter
qualitative characterization of cquilibria.
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the quality distribution of goods in the future. Second, the entry of a new
cohort of potential sellers with goods of all possible quality dilutes the average
quality of potentially tradable goods, since buyers cannot distinguish them
from higher-quality sellers who entered in the past. Finally, as time progresses
and the stock of unsold goods accumulates, the new cohort of traders entering
the market in any period becomes increasingly less significant in determining
the distribution of quality of tradable goods.

If there is no entry of sellers after the initial period (or equivalently, if buyers
can distinguish the period of entry of sellers in the market), then only the first
factor is relevant. In fact, the problem can then be analysed in a simpler model,
where there is only a given set of sellers at time zero and there is no entry over
time. This model has been analysed in an earlier paper (Janssen and Roy 2002),
and it has been shown that in every equilibrium all goods are traded in finite
time.* A dynamic auction game with similar features is analysed by Vincent
(1990).°

Our results can also help us to understand some issues explored in the
literature on financial markets. In such markets, the adverse selection problem
arising from asymmetric information (about assets and returns from potential
investment) between managers of firms and potential investors provides a key
explanation for why firms prefer not to issue equities and why announcement
of equities leads to significant price drops (Myers and Majluf 1984). Empirical
studies have established intertemporal fluctuations in volume of equities and
the extent to which equity issues have a downward impact on their prices (see,
e.g., Korajczyk, Lucas, and McDonald 1991). These fluctuations have been
explained in terms of exogenous changes in the extent of asymmetric informa-
tion. In our paper, though it is not directly cast in the framework of financial
markets, we indicate that even if there are no exogenous factors that change
over time, changes in the extent of adverse selection problem can emerge
endogenously. Thus, firms with better private valuations may delay issuing
equities because they expect similar firms in their cohort to do so, and the
investors infer that which, in turn, reduces the price impact when these firms
actually issue their equities.'”

8 Indeed, the present paper can be considered a companion picce, where the effects of entry on
the dynamic market equilibria arc analysed.
9 Models of scquential bargaining with one-sided incomplete information also highlight the use
of intertemporal price discrimination as a sorting device. Vincent (1989) and Evans (1989)
analyse the case of correlated valuation. In fact, the main idea behind the reasoning here can be
traced back to the analysis of a static competitive market for lemons by Wilson (1980), where
the role of price dispersion in sorting of sellers is emphasized.
Lucas and McDonald (1990) analysc a stationary dynamic modecl where changes in the
information structure and delay in issuc cmerges endogenously. However, it is assumed that
private information about asscts of firms in cach period is publicly observed in the next period.
In our model, private information is never dircctly observed.

1€
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Durable goods markets 557

Finally, all of the non-stationary equilibria of our model are necessarily
non-monotonic in prices and average quality traded. The non-monotone
dynamics in market variables as well as the multiplicity of equilibria and the
resultant coordination problem are manifestations of the lemons problem in
dynamic markets."'

The paper is organized as follows. In section 2 we set out the model and the
equilibrium concept. The main results of the paper relating to existence and
properties of different types of equilibria are outlined in section 3. section 4
concludes. Proofs are contained in the appendix.

2. Preliminaries

Consider a Walrasian market for a perfectly durable good'? whose quality,
denoted by 6, varies between ¢ and . Time is discrete and is indexed by =1,
2....00. All agents discount their future return from trading using a common
discount factor 8, 0 <é < 1. There is an unbounded continuum of infinitely
lived potential sellers; formally, we let each real number larger than 1 be a
potential seller. In each period a cohort of sellers enters the market; all cohorts
are of equal size (normalized to be equal to 1). The set of sellers entering the
market in period ¢ is denoted by I,. We will assume that each 7, is equal to the
segment (¢, 1+ 1). Each seller is endowed with one unit of the durable good at
the point of entry into the market; seller / knows the quality #(i) of the good he
is endowed with and derives flow utility from ownership of the good till he sells
it. Seller i’s valuation (reservation price) of the good is his infinite horizon
discounted sum of utility derived from ownership of the good (if he does not
sell it), and we assume that it is exactly equal to #(i). This implies that the per
period flow utility from owning the good is (1 — )#(i). For each ¢, the cohort of
entering sellers (i.e., sellers in /,) own goods whose quality is uniformly dis-
tributed over [0,0],0 < 8 < 6 < +o0.

In each period, a continuum of (potential) buyers enter the market whose
(Lebesgue) measure is greater than 1. This ensures that in every period the
sellers are on the short side of the market. All buyers are identical and have
unit demand. A buyer’s valuation of a unit of the good with quality ¢ is equal
to v#, where v > 1. Thus, for any specific quality, a buyer’s valuation exceeds
the seller’s. Buyers know the ex ante distribution of quality, but do not know
the quality of the good offered by any particular seller. Once trade occurs, the
buyer leaves the market with the good she has bought, that is, there is no scope

11 In the static version of this model, Wilson (1979, 1980) pointed out the possibility of multiple
cquilibria. The multiplicity of equilibria in his model is due to the naturc of the initial
distribution of quality. For the case of uniformly distributed quality, there is a unique non-
trivial equilibrium in the static modcl. The source of multiplicity of equilibria in our model lics
in its dynamic aspects (in combination with the asymmetry of information).

12 In section 4, we bricfly indicate how the analysis may be adapted to some form of depreciation.
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for reselling.!® In order to ensure that there is an adverse selection problem in
the static version of this model, we will assume vE(f) < 6, where E(f) is the
unconditional expected quality, which is equal to (6 + 0)/2.

Given a sequence of anticipated prices p={p,}12. . . each seller chooses
whether or not to sell and if he chooses to sell, the time period in which to sell.
A seller entering the market in period ¢ with quality # can always earn a utility
level of # by not selling. If he sells in period ¢+ j, his net benefit of selling is

Zf—ﬂ,-u‘f—l [(1 a 5)9]511 o yﬂwj — 8= ﬁ'(ﬁwj —0),

that is, he gets the flow utility in the first j periods, then he receives the price in
period ¢+ when he gives up ownership. The set of time periods in which a
potential seller entering in period ¢ with quality # (given prices p) finds it
optimal to sell is denoted by T(#.p.7). Let us denote by N* the extended set
of positive natural numbers including the point +oo. Then,

T@O.p.f) ={r>1:7€ N* and 6" (0 — p,) > 6" (0 — py) forall > 1}.

Each potential seller i € 7, chooses a particular time period 7(i,p,f) € T(6(i),p,¢)
in which to sell. Choosing to sell in period +oco is equivalent to not selling at
all. This, in turn, generates a certain distribution of quality among goods
offered for sale in each time period 7. Given p, the average quality of goods
offered for sale in period ¢ is E{6(i)|i € I, k<1, T (i,p.k)=1(}.

On the equilibrium path, buyers’ expected quality in periods where trade
occurs equals the average quality sold. As all potential buyers are identical, we
will assume that belief about quality is symmetric. A dynamic equilibrium is
one where all agents maximize their objectives, expectations are fulfilled, and
markets clear every period.

DEFINITION. A dynamic equilibrium is given by a price sequence p={p,}, 15 o

a set of selling decisions T(ip,1),i € I, t=12,..., and a sequence {E(p)}, 15 oo

where E/(p) is the (symmelric) expectation of quality in period t held in common

by all potential buyers in the market in period 1, such that:

(i) Sellers maximize: T(i,p,t1) € T(0(i),p,t); that is, it is optimal for seller i with
quality 0(i) to sell in period T(i,p);

(ii) Buyers maximize and markets clear: If p{i|i € I, k<1, m(i,p.k)=1} >0,
then p,=vE(p), where pu{-|-} is the measure of sellers preferring to sell in
period t; that is, if strictly positive measure of trade occurs, then buyers must
be indifferent between buying and not buying, so that the market clears. If

13 Allowing for resclling of goods by buyers introduces clements of a rental market into the
framework and, to some extent, diverts attention from the basic issues addressed in this paper.
If the number of transactions a particular commodity has undergone is publicly observable
(c.g., when “first-hand.’ ‘sccond-hand,” ‘third-hand’ goods arc distinguished), then the market
where a buyer resclls the good is separate from the one where she initially buys.

sa|pIe ss900y UdQ 404 3dadxa ‘payHwiad Jou AL S UCINALISIP pue 3sn-8Y “[2202/50/20] UO -UBIM JeHsiaaun Ag “wodAs|m Aieiqijauljuo//:sdiy woiy papeojumod ‘2§ 7002 ‘28650t L
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plili € Iy, k<t, 1(i,pk)=1}=0, then p,=vE(p); that is, if no trade
occurs, then it must be optimal for buyers to not buy in that period."*

(iii) Expectations are fulfilled: The expectations of quality in periods of positive
irading must exactly equal the average quality of goods sold in that period;
that is, E(p)=E{0()|i € I, k<t, 7(i,p.o)=1}, if pli|i € I, k<1,
T(i,p.k) =1} > 0.

(iv) Expected quality under no trade: Even if no trade occurs in a period, buyers’
expected quality is at least as large as the lowest possible quality; that is,

E/(p) = # for all 1. (1)

While conditions (i)—(iii) are standard, condition (iv) simply imposes a weak
constraint on the equilibrium belief about quality held by buyers (i.e., their
willingness to pay) in periods in which the measure of goods traded is zero.

3. Equilibria

In this section, we discuss the nature of market equilibria and establish the
existence of certain types of equilibria. The results below provide insight into
the way in which asymmetric information and the possibility of waiting affect
the functioning of the market mechanism and the dynamics of prices and
characteristics of trades over time.

First, we state a fundamental property of all equilibria: if a good of a certain
quality is traded in a particular period, then all goods of lower quality held by
sellers that are currently in the market (and have not yet traded) must be
traded in that period. To see this, note that a seller whose good is of quality x
finds it optimal to sell in period ¢ only if

pi—x>8"(p,—x)forall 7> .

This, in turn, implies that for any seller with good of quality y < x
pi—y>8"(pr—y)

The incentive to wait (the difference in discounted surplus obtained by not
selling and waiting till a particular period) for a higher-quality seller always
exceeds that for a seller with lower quality. Thus, in every period ¢ in which
trade occurs, the set of qualities traded is an interval [6.0,]. where 0, is the
marginal quality traded in period 1; all sellers who have entered the market by
that period, have not traded in an earlier period and whose goods are of
quality lying in this interval trade in period 1.

14 Remember that the measure of buyers exceeds the total measure of scllers, so that if the price
falls below vE(p), there would be excess demand in the market.
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An important property of all equilibria follows from the above discussion:
within the cohort of sellers entering the market in a particular period, a seller of
higher quality never sells earlier than a seller of lower quality. In particular, if
the equilibrium is non-stationary such that within the same cohort of sellers,
some sell earlier and others later, then it is the higher-quality sellers who wait
longer in order to sell. Aside from the fact that certain high-quality goods may
never be traded in some of the equilibria, the cost of waiting for high-quality
sellers is a significant component of market failure.

PROPOSITION 1. In any period t in which trade occurs, the set of qualities traded is
an interval [0.0,). Within the cohort of sellers entering the market in any parti-
cular period, sellers of higher quality never trade earlier than sellers of lower
quality.

Recall that we have assumed that
vE@®) < 6." (2

Under this assumption, in the one-period version of our model (the Akerlof-
Wilson framework), the unique non-trivial equilibrium is that only goods of
quality lying in the interval [#,6,] may be traded, where 6, is uniquely deter-
mined by

0+6,
=

v O;. (3)
We shall refer to 6, as the ‘static quality’ — the understanding being that this is
the highest marginal quality sold in the single-period version of our model.

It is easy to check that even in our dynamic model, an outcome where
entering sellers with quality lying in [0.6,] trade at price 6, in every period, is an
equilibrium. Prices are constant over time, so no entering seller with quality in
the interval [f,6;) has an incentive to wait and sell later. The seller with quality
f, earns exactly zero surplus and is indifferent between selling, not selling, and
selling later; sellers with quality higher than 6, find that the market price is
always below their reservation price. In fact, this is the unique stationary
equilibrium of our model. To see this, observe that in any stationary equili-
brium, the interval of quality traded must be identical over time, and the
requirement that sellers with quality outside this interval should not wish to
trade, together imply that the seller of the marginal quality traded must earn
zero surplus in every period. It follows that the marginal quality must be 6, in
period 1 and hence in every period.

15 Note that this is cquivalent to v < 26/(@ + #), which is always smaller than 2.
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PROPOSITION 2. The infinitely repeated version of the unique non-trivial equili-
brium of the one-period version of our model is also the unique stationary
equilibrium of our model. In this equilibrium, in every period entering sellers
with quality lying in the interval |0.0) trade at price 0, = v8/(2 — v), while sellers
with quality higher than 0, never trade.

We refer to the stationary equilibrium outcome as the ‘repeated static outcome’.

If the repeated static outcome were the only equilibrium of our dynamic
model, our analysis would not have provided much in terms of additional
insight. As it turns out, however, there are many other equilibria. These
equilibria are non-stationary with prices and the range of quality traded
changing over time.

Example 1

Consider the following parameter values: § = 10,0 = 16, §=1/9, v=32/27. In
the one-period version of our model, only goods of quality lying in the interval
[10, 6] can be traded at price f,, where #,= 14.545 (approx.). As indicated
above, the infinitely repeated version of this outcome is the unique stationary
equilibrium of our dynamic model. There are, however, other non-stationary
equilibria. The following is an equilibrium with two-period cycles. In period 1,
sellers with quality lying in the interval [10,14] trade at price p; = 12v=14.22.
In period 2, all sellers entering in that period and all sellers with unsold goods
from period 1 sell at price p,= 13.5v = 16. Note that the seller with quality 14 is
indifferent between selling in periods 1 and 2:

Pl — 14: {){[Jg = 14]

There are no untraded goods at the end of period 2. The process can repeat
itself in periods 3 and 4, and so forth. In this equilibrium, goods of all possible
qualities are traded within at most two periods of entering the market. Sellers
of quality below 14 sell instantaneously, while those with higher quality may
wait for one period. Observe that the price and the range of quality of traded
goods in the first period of each phase of the cycle is actually lower than that in
the repeated static outcome. In other words, low-quality sellers selling in odd-
numbered periods actually earn a lower surplus than they would in the
repeated static outcome. [ |

The example outlined above illustrates the possibility of a cyclical
equilibrium where all goods entering the market are traded within a fixed
number of periods, with the prices and average quality increasing until all
potentially tradable goods are traded. In some sense, this is the simplest and
most intuitive kind of non-stationary equilibrium where all goods are event-
ually traded. The main result of this paper is that such an equilibrium always
exists.
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PROPOSITION 3. There exists a T, | < T < oo, and a dynamic equilibrium with T-
period cycles where goods of all qualities are traded within T periods of entering
the market. In particular, there exists a partition {6y.,0,, ....04} of the support of
the distribution of quality, § = 0y < 0, < ... < 07 = 0, such that in the ith period
of each cycle, | <i<T, all sellers entering the market in that period who own
goods of quality less than 0; as well as all sellers who entered in the previous
(i — 1) periods and own goods of quality lying between 6,_, and 0, sell in period i.
Prices and average quality increase along each phase of the T-period cycle.

The basic structure of the equilibrium described in proposition 3 is as
follows. As this is an equilibrium with stationary cycles, it is sufficient to
describe the first phase, 1= 1,... T. Let '(x,y) denote the conditional expecta-
tion of quality traded when it is known that the set of sellers is exactly equal to
the set of all new entrants with quality below y and all sellers from the previous
(1 — 1) cohorts whose qualities lie between x and y. In the equilibrium described
in the proposition, the average quality of goods traded in period ¢ is n'(6,_,.0,).
where

16, — 6,120t 4 0,y — 00
16, — 0, 1))+ (B — &) '

Indeed, 7'(6,_,0,) can be thought of as the weighted average of quality of two
sets of goods viz., the set of goods belonging to new entrants in period ¢ and
the set of goods of sellers who entered in the previous ¢ time periods; quality is
distributed uniformly in each set. As ¢ increases, the weight of the latter set
becomes more dominant.

In every period, price equals buyers’ valuation of the average quality traded
in that period; hence, price p, in period ¢ is given by p, = vn'(6,_1.0,). The price
in each period must be at least as large as the reservation price of the highest
quality sold in that period. Let s, denote the surplus earned by the seller with
the highest quality sold in period ¢. Then, s,= v5'(#,_,.6,) — #,, and this must be
non-negative in every period t=1,...T.

Sellers of quality below #,, who have not sold earlier, strictly prefer to sell in
the rth period. For any ¢ < T, the seller with the highest quality sold in period ¢
must be indifferent between selling in period ¢ and selling in period (¢ + 1). This
is because sellers with qualities just above #, strictly prefer to sell in period
t+ 1, while sellers just below 6, strictly prefer to sell in period . Thus,

??f('g:—l b)) = 4)

8 = 6[‘JT|,I+I(6-F19?+|) = 6{]5 = 11 i 'JT —L (5}

For a given 6, this indifference equation defines the next marginal seller 6, ,.
One implication of this is that in every period except for the last, the seller with
marginal quality #, earns strictly positive surplus.
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Appendix A contains the proof of the proposition. It shows the existence of
a finite sequence {#,}, ¢ . 1 such that the fundamental incentive condition
holds:

0 S V'q{{er—lﬁ:) G 9!’ = é‘[l’ynf-'—l{ehﬁi-i-l) = 9{]1 E= l'! R 'JT =1

The proof defines the points 6,/s iteratively. The basic argument is that
(see lemmas 1 and 2) if marginal quality in the first period ¢, is close enough
to #, (so that the initial surplus earned by the marginal seller is arbitrarily
small), one can iteratively define f#,s for an arbitrarily large number of time
periods (using the above incentive conditions) and ensure that these #,s
themselves are arbitrarily close to 0,. The next part of the proof (lemmas 3
and 4) works on the assumption that sufficient number of time periods have
gone by and defines a backward iterative process where the full interval of the
qualities, including 6, is traded in a certain period and then tries to iteratively
construct intervals with lower marginal quality that could be traded in
previous periods so as to meet the above-mentioned incentive condition. It
can be shown that in this backward iteration, one can reach an interval where
the highest quality lies in a neighbourhood of #, within a finite number of steps.
Finally, the proof shows that the two paths of iteratively defined marginal
qualities — one going upwards by forward iteration and the other going down-
wards by backward iteration — can be actually linked without violating the
incentive condition.

It is possible that, apart from equilibria where all qualities are eventually
traded, there are other non-stationary equilibria where the range of quality
traded in the market is actually lower than 6. Consider a slight modification of
example 1 where § > 16 (all other parameter values remain unchanged). It can
be checked that the equilibrium with two-period cycles described in that example
is also an equilibrium here, even though the highest quality exceeds 16. In period
1, the interval of quality traded is [10,14], while in period 2, all sellers who
entered in period 1 with quality lying in the interval (14.16] as well as all new
entrants with quality in the interval [10,16] trade. The price in period 2 is 16 so
that the seller of the highest quality traded in period 2 earns zero surplus. The
process repeats itself in periods 3 and 4, and so forth. Sellers with quality lying
between 16 and @ find that the prices are always below their reservation value.

In example 1, the seller of quality # makes zero surplus. In general, however,
it is possible that in equilibria where all goods are eventually traded, the seller
of quality f earns zero surplus. This contrasts with the fact that in any dynamic
equilibrium where the highest quality sold over all periods is some 6 < 6, the
seller of the highest quality traded (ever) must earn zero surplus. For if the
seller of quality #* earned strictly positive surplus, there would be incentives
for sellers of quality just above #* to trade, in which case #* would not be the
highest quality ever traded.
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It is also not necessary that for every #* lying strictly between 6, and 6, there
is an equilibrium where the highest quality traded (over all periods of a cycle) is
exactly equal to #*. The restriction that the seller of quality #* earns exactly
zero surplus in the period in which he trades is an additional restriction not
required in an equilibrium path where the highest quality traded equals 6, since
in that case there is no higher-quality seller who must be prevented from
trading. This additional restriction reduces the possibility of equilibria with
6* lying strictly between 6, and 6.

All the non-stationary equilibria discussed in the examples and in proposi-
tion 3 are cyclical equilibria where, within each cycle, prices and marginal
quality sold increase until they reach a certain level. However, there may also
be cyclical equilibria where each cycle is non-monotonic; that is, the nature of
the equilibrium path is more non-linear than the equilibrium alluded to in
proposition 3.

Example 2

Consider the following parameter values: § = 10, § = 16, §=0.1, v=1.2. In the
one-period version of our model, only goods of quality lying in the interval
[10, #,] can be traded at a price equal to #,, where .= 15. It can be checked that
the following is an equilibrium with three-period cycles, where all goods
entering the market are traded within three periods. In period 1, all sellers
with quality in the interval [10, #;] trade, where 6, = 14%, the price in period 1
is 14%. In period 2, only sellers entering in period 2 with quality in the interval
[10,136—33] trade; the price in period 2 is I%. In period 3, all sellers who entered
in periods 1 and 2 but did not sell as well as all sellers entering in period 3 trade
(the highest quality traded is 16). The price in period 3 is 18%. Observe that
the price as well as the marginal quality sold decline when we go from period |
to period 2 and then increase when we go from period 2 to period 3. There are
no unsold goods at the end of period 3 and the cycle can repeat itself. The
prices are such that the seller with the marginal quality traded in period 1, that

is, 6;, is indifferent between trading in periods 1 and 3; that is,

0+0
(p1 — 01) = 8*(p3 — 6,), where p; = \_z I

o 30—
" 20306, 6, —0)

At the same time, the seller of the marginal quality traded in period 2 i.e., 65, is
indifferent between trading in periods 2 and 3; that is, (p, — 60,) =8(ps — ),
where p» = v(f + 62/2). This results in a system of two non-linear equations
with two unknowns, and the above mentioned numbers are a solution to this
system. Finally, observe that the seller of the highest quality sold in this
equilibrium, that is, 6, earns strictly positive surplus. [ |
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The non-stationary equilibria we have talked about so far exhibit one consist-
ent property, viz., that prices and the range of quality traded (or equivalently,
the marginal quality traded) fluctuate over time in a cyclical fashion. Adverse
selection and the entry of new goods (even when the distribution of entering
quality is identical over time) combine to create non-monotonicity in market
dynamics. In fact, some kind of non-monotonic behaviour is actually charac-
teristic of a/l non-stationary equilibria.

PROPOSITION 4. In any non-stationary equilibrium, the sequence of marginal
quality sold over time is non-monotonic.

If a monotonic equilibrium were to exist, buyers would eventually face almost
no uncertainty about quality available on the market, and adverse selection in
the market would asymptotically disappear. The above proposition indicates
that this does not happen. Non-monotonic fluctuation in market prices and
qualities of goods sold is a manifestation of the lemons problem in durable
goods market with entry. Note that proposition 4 also implies that the repeated
static outcome (i.e., the unique stationary equilibrium) is the unique monotonic
equilibrium.

We have seen that in some of the non-stationary equilibria goods of all
possible quality (including 6) are traded, and in others the highest quality
traded is lower than #. However, a consistent property of all the non-stationary
equilibria described above is that the range of quality eventually traded in the
market is always higher than that in the repeated static outcome; that is, the
highest quality eventually traded always exceeds f,. Hence, the possibility of
intertemporal waiting ensures that the problem of not being able to trade
higher qualities, which is the lemons problem in the static Akerlof-Wilson
framework, is less severe in the dynamic model.

PROPOSITION 5. In any non-stationary equilibrium, the highest quality traded
in the market (supremum of quality traded over all periods) is strictly greater

than 6,.

The main argument underlying this proposition is as follows. The highest
quality ever traded, say ¢, can never be strictly below 6, since the seller of
quality #" would then earn strictly positive surplus, creating incentives for
sellers of qualities higher than # to trade. As we are looking at non-stationary
equilibria, the only other possibility that we need to rule out is that all marginal
qualities lie below 6, and converge to it in the limit. In that case, buyers would
expect the quality sold to be approximately #, in the long run (the mass of new
entrants become unimportant) and so would be willing to pay approximately
vfl,. Marginal surplus would be bounded away from zero, creating incentives
for sellers with quality slightly above 6, to trade.
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The length of waiting time before ‘higher’-quality sellers sell in the market
depends on the rate at which the equilibrium prices increase over time. The
latter, in turn, is constrained by the fact that between any two successive
periods in which trade takes place, prices must be such that the seller trading
the marginal quality must be indifferent between selling in either of the two
periods. The higher the value of & (the lower the impatience), the smaller the
rate at which equilibrium prices can increase between any two given time
periods. Loosely speaking, we would expect that in any equilibrium, the length
of time needed for goods of very high quality to be traded is likely to increase
with & and, in fact, becomes infinitely large as 6 T 1.

For any given € [0,1) and @ € [6,.0], let 7(5.0) denote the earliest time
period across all equilibria in which a seller with quality # entering in period |
sells her good (over all equilibria).

PROPOSITION 6: For any ' € (6_‘.,5], T7(6.0%) — o0 as & T 1, that is, as traders
become infinitely patient, the length of time before a seller with any given quality
higher than the static outcome 0, can trade becomes infinitely large.

Note that 7(6,0*) — oo also implies that for a trader of quality #* of any
cohort, the length of time before she can trade must become infinitely large
(as 6 7 1).

For any fixed t, it is, in general, very difficult to characterize the range of
quality that can be traded within ¢ periods of a cohort’s entry into the market.
The only exception is when #=0; in that case, it is easy to characterize the
range of quality that can be traded within a given number of periods (for some
dynamic equilibrium). That is because the necessary and sufficient condition
for a dynamic equilibrium in this case is that the highest quality seller in each
period should earn zero surplus. Let zy=4#, and for 1> 1, let us iteratively
define z, as the highest quality earning zero surplus in period ¢ if all sellers with
quality until z,_; have traded by the end of period (1 — 1); that is,

12— (-2, — ¢
I’E(Z,_hz‘,) = z; OT E 1 ( )Z!—I <
21zi—(t— Dz — 8

Zi-

Then, for 6 =0, there is a cyclical equilibrium where the marginal quality in the
{-th period of the cycle is z, (provided it does not exceed #, at which point a new
cycle begins). In this equilibrium, any seller with quality ¢ < z, trades within ¢
periods of entering the market.'®

Unfortunately, no such definite characterization can be provided for 6 > 0,
where the dynamics of quality traded over time is primarily determined by the

16 Note that z, corresponds to the highest equilibrium quality in a one-period model when the
static distribution of quality in the market is identical to that generated by a new cohort added
to (1 — 1) previous cohorts with quality larger than z, .
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intertemporal no-arbitrage condition which makes it much more difficult to
pin down the highest quality traded within a fixed number of periods.

It is easy to show that, as #71, the highest quality traded within any given ¢
periods after entry converges to f,. We do not state this result formally, since it
is, in fact, similar in content to the statement of proposition 6.

The last feature of non-stationary equilibria we want to highlight follows
from the fact that in all such equilibria, the highest quality traded in the first
period must be strictly below #,. If the marginal quality sold is higher than #,,
then its seller would earn negative surplus. On the other hand, if the marginal
quality sold in period 1 is exactly #,, then the marginal seller earns zero surplus,
which would imply that 6, = 6, for all ¢ which is the (stationary) repeated static
equilibrium. The significance of this is that the surplus earned by sellers in the
first period of any non-stationary equilibrium is lower than what they would
obtain in the repeated static outcome. This, in turn, indicates why non-
stationary equilibria — even those in which goods of a// quality are sold — are
not Pareto-superior to the repeated static outcome where the set of goods
eventually traded is smaller and of lower quality. Further, if we consider
non-stationary equilibria, where the loss in surplus in the first periods of
trade (relative to the static outcome) is small, that is, #; is close to f,, then
the discounted surplus gain obtained by future trading of higher qualities is
also small, because qualities significantly higher than 6, can be traded only in
periods far into the future.

4. Discussion and conclusion

Since the publication of Akerlof’s seminal paper on the ‘market for lemons’
more than thirty years ago, economists have recognized that when sellers and
buyers have correlated valuations, and sellers” valuations are unknown to
buyers, market failures (in an otherwise perfectly competitive market) occur.
In particular, when valuations depend on quality of goods and the market is
static, market failure manifests itself in the fact that higher-quality goods
cannot be traded, despite the potential gains from trade. As we have seen,
this is also one of the forms in which adverse selection may manifest itself in
dynamic markets; for there exist dynamic equilibria where goods of very high
quality are never traded. Our analysis, however, shows that in dynamic mar-
kets there also exist equilibria where all sellers, no matter how high the quality
of their good, may be able to trade in finite time. In such equilibria, the
inefficiencies caused by asymmetric information manifest in the fact that sellers
of higher qualities need to wait longer than sellers of lower quality in order to
sell. The cost of waiting is an important factor that must be considered in any
assessment of the loss in welfare caused by adverse selection.

There is a wide variety of possible equilibria, and, except for the unique
stationary outcome (which is a repeated version of the equilibrium in the static
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model), all equilibria exhibit non-monotonic dynamics in prices and quality
traded. Moreover, in all of these equilibria, a wider range of quality is traded
compared with the outcome in the static model. The coordination problems
associated with multiplicity of equilibria and the nature of market fluctuations
generated along the equilibrium path of the non-stationary equilibria indicate
that any list of problems caused by asymmetric information in dynamic
durable goods markets ought to include market volatility.

We have restricted the analysis in the body of the paper to the case of
perfectly durable goods. However, we can allow for depreciation. For example,
consider the following specific form of depreciation: in every period there is a
chance A € [0,1] that the good does not survive until the next period. In that
case the incentive equation (5) can be written as

8¢ = O[(1=N) (v (01,0,41) — 0)) + X - 0] = 8(1—=N)[(vn* 1 (0,,0,41) — 6))).

This type of depreciation is equivalent to a change in the discount factor and
does not change the qualitative properties of our equilibrium analysis.

Our analysis in this paper has been confined to the role of the price
mechanism as an institution for organizing resource allocation under asym-
metric information. While the qualitative predictions of our model are import-
ant for an understanding of the market as a trading institution, observed
market dynamics may differ considerably from our predictions. This is because
in the real world, the price mechanism is augmented by other non-market
institutions and technologies that enable agents to signal or screen information
and they alter the behaviour of agents as well as the pattern of trade.

Appendix A: Proof of Proposition 3

For any given #, we define the process {#,} = {0,(60,)} with 6, >0, if it exists,
iteratively by the indifference equation (5):

YU D~ -8 (A0)

where the L.H.S. is the expression for p,.;. Moreover, if the process is well
defined up to period ¢, then we can define the surplus of the marginal seller in a
period by s,=p,—#,. The above implies that #, and s, are functions of 6,.
Sometimes we take the liberty of dropping this dependence and write simply 6,
and s, instead of #,(6,;) and s,(f,). Sometimes we also write s,(f,) instead of
56

From the statement of proposition 3 it is clear that in order to have a T-
period equilibrium cycle, we have to construct a sequence of marginal qualities
{6,}3:, such that indifference equation (5) is satisfied, 7 = 6, and the seller of
marginal quality makes non-negative surplus in every period. In principle, one
could try to construct such a sequence in several ways. One possibility is to start
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with an arbitrary @, lying below the highest quality sold in the static model and
then iteratively define a ‘forward process’ #,>,_;, 1> 1 using the indifference
equation (5), verify that the buyers’ valuation of the average quality on each
interval traded exceeds the highest quality and hope that in a finite number
of steps, the entire support of the distribution of quality will be traded, thus
completing a phase of the cyclical equilibrium. Another possibility would be to fix
some T, define an arbitrary #,-,, and then iteratively define a *backward process’
0,_,<8,t—1<T—Iand hope that one can cover the entire support in 7-steps.

Both approaches run into problems. It is difficult to ensure in the forward-
looking process that surpluses of marginal qualities remain non-negative when
the marginal quality is sufficiently higher than #,. In the backward-looking
process the problem is to ensure that a marginal quality satisfying the indif-
ference equation exists; the surplus earned by the marginal seller #, after some
T — 1 steps of the iteration (for ¢ large) may be so large that there is no #,_; < 6,
that ‘makes ¢, indifferent.’

The structure of our proof is therefore as follows. We define two sequences,
one by the forward-looking process and one by the backward-looking process
and then combine these sequences into one large sequence that satisfies all the
equilibrium properties. The first two lemmas define the forward-looking
sequence starting from a small left-neighbourhood of #,. According to lemma
1, if #, is chosen arbitrarily close to f,, then the upward sequence of marginal
qualities ¢, can be defined (while satisfying the indifference of marginal seller
and the non-negative surplus conditions) for a finite but arbitrarily large
number of periods, and the surpluses that the marginal qualities make grow
at a rate that is higher than and bounded away from 1. Lemma 2 establishes
some more properties of this finite sequence. As #, is the largest quality sold in
period ¢, it is clear that the average quality in that period cannot be larger than
#,, and, therefore, the surplus s, of this marginal seller cannot be larger than
(v—1)f,. Lemma 2 says that if the process is defined for a sufficiently large ¢
(by choosing #, arbitrarily close to ,), then of all the #;s for which the forward
sequence can be defined for (any such large) ¢ periods, there is at least one #,
such that the surplus s, of the marginal seller 6, is arbitrarily close to (v —1)6,,
and, moreover, such 6, is itself arbitrarily close to 6,.

LEMMA 1. Choose any « with 1 > o> ov/[ov+2(1 —8)(v—1)]. For any 7> 1,
define 8,(1) = inf{x|0; € (x,0,) and t <1 = s, > 0 and as, > s, }. For any T,
0,(7) < O, and lim,_, 8,(7) = 6.

Proof. We first show that for any given value of #,, equation (A0) uniquely
defines 6, ;. We then solve (A0) to get an expression for this solution of 4, .
Using this solution, we then use an induction argument where we neglect terms
involving cf,c,.s‘,,sf, since we know that these terms are very small when we
choose #, close enough to 6,. Write #,=60,+¢,. For a given #, equation (A0)
implicitly defines 6, in the following way. For a given 6,, p,., 1s defined by
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and increasing in ..y, and at 6,.,=6, L.H.S. equals v/2(0,+6). As

s1 =v/2(60) + 6) — 6,, it is easy to see that at #>=#6,, L.H.S. 1s strictly smaller

than R.H.S. Moreover, for #, close to #,, s; is close to 0. So for a given ¢, close

to 6,, (A0) defines #, > #,. More generally, at #,,; =6, L.H.S. of (A.0) is strictly

smaller than R.H.S. when # < 2%"9; + %,.\';, which is the case as #, > #, and s, > s;.
Solving (A0) for #,,, gives

(t+D=0+e6+% +VD

b1 = W+ 1) (A1)
where
12 2 ) — 2 P e
D— ¢’ (t+1) (\2 1) —|—2c;ﬁ(f—f—|)v(p D(vi—t+1)
2-v) 2—v
5,0 (—Ifi—1). . Vi EGSt
—?21’(!-1— i)ﬁ—m(w D[(1 2)(.1 +—1-

The induction argument proceeds in three steps. First, we will show that

[vt(l —3) +v—2— Ev].\'; > &6(2 — v)e; holds for i = 1.
X ¥

Next, we show for a fixed 7 that there exists ¢; small enough such that for any

t< 7 if the above inequality holds for i=¢, then it also holds for i=¢+ 1.

Finally, we show that if the above inequality holds, then it is also true that

o §,4q >3, This implies that s, >0 for all 1 < 7.

(1) We first prove that [vi(1 — (§/a))+v—2—(d/a)v]s, > 6(2 — v)e, holds for
t=1 and that s; > 0. Given that at 1= 1, quality is normally distributed
s1=—(1 —v/2)e;. As ¢, <0, it is easy to see that s;>0. For =1, the
inequality above reduces to —2(v— 1 — (8/a)v)((2 — v)/2)e; > 6(2 — v)e;. As
€; < 0, this can be rewritten as —2(v — 1 — é/av) < 26. This inequality holds
for all o> év/[év+2(1 — &) (v — 1)].

(2) We next argue that [vi(1 — (6/c)) +v— 2 — (8/a)v]s, > 6(2 — v)e, implies

& 6 )
[V{I B l)(l - R) -9 =2 — avj| Sep1 > 62 — V) = 62 — v)(Bp — 65)-

When ¢, is small enough, ¢, and s, are also small enough so that we can neglect
terms involving ¢Z and ¢,s,. Given (A1), a sufficient condition for this inequality

to hold is then
v+ D= +lv—2)v+ 1) -2y 1
62 —v) L
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which can be rewritten as

vt + 1)(1 —6/a) — év/a+ (2 —v)(6 —2)
52 —v)

8§ > 6.

Given the induction hypothesis, this inequality holds if

v(f—i—l)( 6)—£v+(2—1'){5—2)>w(1—ﬁ)—|—v—2—£v.

Jresis
(83

This inequality holds if « > év/[év+2(1 — 8)(v — 1)], which is assumed in the
lemma.

(3) Finally, we prove that [vi(1 — (6/a)) (+ v — 2 — (&/a))v]s, > 6(2 — v)e, implies
that s, > s,. The latter inequality is equivalent to e(p, . — 6,,1) >s,, Or

11
9;.{.1 < 9; + (3 = _) & (Az)
X

Given (A1), this can be rewritten as

v—1 | 1 | | |
i (“;)” (3‘5‘5)-‘*>—vu+1)‘/5

i(1-2Ypv—2-245 e 2C Wy Wyh L S
[11(1 Q)+v 2 al»:|.\,->'(5(2 v)e; (v—l)ﬂ[(l 2)c;—|— 5 (A3)

or

We know that if we take ¢; small enough, s;=—(1—v/2)¢; will be small.
Similarly, as ¢, and s, are continuous functions of ¢,_; and s,_; and as ¢,=s,=0
if €,=0, ¢, and s, can be made arbitrarily small as well. In particular, for a
given 7 we can choose ¢; so small such that the last term on the right-hand
side of inequality (A3) is negligible for all r<7. Hence, if [vi(l—
(6/a))+v—2—(8/a)v]s, > 6(2 — v)¢,, then « 5., >, and, thus, 5,>0 for all
t < 7. Above, we have shown that for any 7 there exists a left-neighbourhood
of #, such that for all ¢ < 7 surpluses are positive and increasing by at least a
factor e. Finally, we show that lim, .., #,(1) = 6,. Suppose that this were not
the case. Then there would be a monotonic sequence {f,} ={#,(6;)} with
0,1 >0, defined by (A0). On the compact interval [ﬂ,@], this sequence {#,}
must then be convergent, which would then constitute a dynamic monotonic
equilibrium contradicting proposition 4. So, for all ¢, there exists a ¢ such that
as1(01) < sd6h). u

LEMMA 2. For any € >0 and ¢>0, there exists a t (large enough) and a
01(1) < O _such that 6, < 0,(6\) <6+ € for all 6,(1) <0, <05 and 5,(6:(1)) >
(v —1)8(0:(0) — €.
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572 M. Janssen and S. Roy

Proof. From lemma | we know that starting from a given #; close to f,, we can
define a forward sequence for 7 periods such that surpluses of marginal sellers are
increasing by a factor at least equal to 1/o. In the proof of lemma 2 we first
enquire for a given £/; what is the first period when surpluses stop increasing at the
rate of 1/a. After lengthy calculations we conclude that this happens when the
ratio of marginal qualities 6, ,/#, > z for some given z > 1. We next show in seven
short steps that if this were to occur in some period ¢ (for this given #,), then it
must be the case that there is some 6;(¢), such that the surplus made by the rth
marginal seller 8,(,(¢)). in the forward-looking process starting from ,(7) as
the initial marginal quality, is arbitrarily close to (v — 1), (the larger ¢ is, that is,
larger the initial ‘given 6’ is, the closer it is). We finally show that this marginal
seller 6,(5.(:)) and all marginal sellers ¢, (6;) for #; > é.(r) are arbitrarily close to
0,.
Choose
(v +v—1) bv

Y st o picd,
e Y TS e T E o)) B

We determine when, for a given 6, as,,; <5, We know that, when 6, is close
to #, the first time that as, . < s, occurs, { must be arbitrarily large. From the
proof of lemma 1 we know that this is equivalent to determining when
01> 0,4 ((1/6) — (1/a))s,. To this end, we take the indifference equation

A e Ve S S
2 IB;_(I_ 1)6;_| _Q (5

and rewrite it as

0, = (A4)
v
where
D= [0— D01~ 2] e[ )02, — 2001+ 98] + 20701 - 0)

Given (A4), 0,.,>0,+((1/6) — (1/a))s,, if and only if,

v — 1Nt + l)(%—;l;)afs,ﬂw 1)(%—&)3-}[”;2 —(—j
2

<0, —9) [(2 —v)(0, —0,) + 2%’] (A5)

As (A5) is quadratic in s,, there are two solutions for which (A5) holds with
equality. We will denote these solutions by s(f,) and 3(#,), respectively, and
s(#,) < 5(#,). It is easy to see that for a given 1, (AS5) holds for s, < s(#,)
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and s, > 5(6,). Note that for 7 large enough, s(¢,) is close to zero and positive. We
will show that when ¢ is large enough, it cannot be the case that s, < s(#,), so that
effectively s, > 5(#,) has to hold when as,, 1 < s,. To do so, suppose ¢, is such that
for t periods s> sy, k=2,..,t for some o< 1. The indifference equation
8,_1==0(p,— 6,_1) can be rewritten as 8, — 6,_ = —s,+ (1/6)s,_1.

Iteratively applying this indifference equation yields
0, —6 ——-—~l( — S+ ~l—l Ef k (A6)
5 s Sk
{ 1 6 I " k=2

As 51 <s, and 6, <#,, this implies that 6, — 6, < ((1/6 — 1))X;_,s¢. As, more-
over, asy > 5,1, this in turn implies that

| e | 1 5
0, — 0, < (3— 1),»2(1/‘ _(3— 1)5,ﬁ< (5— 1) — (A7)

k=0

For large ¢, and using (A7), (A5) holds true only if

15
v—2 v) 0 a'{l—u)] +2% (A%)

Ta) S arnE-h

6 !
As 6, and s, are bounded, the R.H.S. is arbitrarily small for large . Since,
for large ¢, s(f,) is close to zero, it is easy to see that (AS) cannot hold for
s; < s(#;). Hence, (A5) can hold only for s,(#,) > 5(6,). For large ¢ (A8) can be
rewritten as

2(v — 1B, + .s',(

5 (l + %) vl, B
0, + —g = m 0((.).

Substituting this back into (A4) gives a condition on #,; in terms of ¢,

1+2 1 |
Orp1 > 7 (l _g)v(), + r7E l)vD — ofe), (A9)

where

[v(v— D)(1 — 8) +8(1 — L2

D'= 1)%6?
e+ [2—(1— 680

+v(t+ 1)(0; — 0)[0(2 — v) — vd)]

o Y 1
e X EEE )y 6, ),

For large ¢, (A9) reduces to
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(L+2)6 [~ — 8+~ 1),
pp (=

o(e).

Orp1 >

Define

o

Straightforward calculations show that

8 V4ev—1
Z>llf—<27,
Ies v4+v—1

which, given the restriction imposed on « holds. Hence, as,.;<s, only if
#,41 > z0, for some z > 1.

We use this result to show that for any ¢ >0 there exist a ¢ and ﬁl(f) such
that s;(fj|(r)) > (v— 1)9,(5.(1)) — €. This part of the proof proceeds in seven
steps:

(i) We first define ¢, (¢,) as the 6, that receives maximum surplus in ¢+ /

given f,. For a given 6, surplus in ¢+ 1 is given by

v+, -1k -0
W =5 G D — 90, —0

— Opy1-

Taking the first derivative, and setting it equal to 0, gives

Osi 201+ DO [(t4 1)y — 10, — 6] — (1 + I)[(‘H' 1)9§+l — 167 _QZ]
1 2 [(t+ 10,11 — 16,— 0]

—1=0:

This can be rewritten as

_ 16+ 0+ (0 — 0575

1= e (A10)

Note that for large ¢, #;,, — ¢,. The maximal surplus in period ¢+ 1 is then
given by

. 10,400, 0/

Stk = t+1

- 9)(»- — D/ZE+ /v12 — V)

= — D1 — (6 i1

Note that as 1 — oo, 5;,; — (v — 1)f41. So, for a fixed small >0 and any ¢

large enough, s,.; can in principle get larger than (v—1)f,,1 —e.
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(if) (A10) implies that for any ¢ large enough, (67,,/6,) < z.

(iif) From the above we know that for given large ¢ there exists a ¢; < 6, with
0,1(6y) > z0,(6,) for some z> 1.

(iv) For a given large 7 and for all 8, € (6,(1).6,).,1 < 6;,,/6, < z.

(v) By choosing ¢, =#6,, we know that €,,,/6,=1.

(vi) As 0,,, and 6, continuous in ¢, and 6,>0, #,.,/0, is also a continuous
function of #,.

(vii) Applying the intermediate value theorem, we can argue that for any ¢ large
enough, there exists a 6;(7) € (8,(1).0) such that 6,,,(6,(1))/0,(6:(1)) =
07,,/0;. In case for a given ¢ there are multiple solutions, é.(f) will denote
the largest of them.

So far, we have shown that for any small ¢ > () there exists a (large) 7 and a é;(!)
such that .\-;(§|(£})2 (v— ])6,(§1(r))—c. Now choose T large enough. We
finally show that for any €>0 there exists a ¢>T such that
01 < 0,(6,) < 6+ € for all 0,(1) < 6, < 6. From (i)-(vii) it follows that for all
01 € (01(0).0,).0.(6,) < 8;(6,1(6,)). So, (0,(6,) —6,1(6)) < (#;(61) — 0, ,(61))
for all #; > 6,(). Equation (A10) shows that the R.H.S. of this last inequality
goes to 0 as 1 becomes large. Hence, for all (very small) ¢; >0 and for all
0, > (6,(1)) there exists a (large) ¢ such that 6,(6,) — 0, ,(0,) < ¢,.

We know that s5,(6,) is a continuous function on (8,(¢).6;), ranging from
(v—1)8,—€ to 0. Choose any small e; € (0, (v—1)f,—¢€). Observe that
s—1(67) = 8s(61) + 0,(0,) — 0,_1(6,)]. Hence, for all 5, > e», we can write

s1(0) o 0461) —6,.4(0) €1
soy T ey <

By choosing ¢; much smaller than ¢, the R.H.S. of this expression can
be made arbitrarily close to 6. To prove the claim, rewrite equation
(A6) as

51 1 —k—1 1 { Y
0:(61) = 6, -i-?-l— (3— l) Zj_Z si+ {(5 = 1) Z;_;_a 8j —3}

For a given value ¢ and for each value of #, there exists a finite number k > 0,
depending on #,, such that s,_; <e. If 5, <es, k is equal to 0. On the other
hand, if 5,> e, as s, is finite (smaller than (v — 1)8,(6,(1)) < (v — 1)f) and has
been growing at a rate strictly larger than 1, there must be a finite & such that
§,_k < 2. It follows that for large ¢, and for all #, > |9A|(f):]7

17 Note that here we arc using the fact that surplus is always increasing at a rate larger than 1/a,
e < 1, and for s, p(f;) > ¢, it is increasing at a rate larger than 1/[8(1 + (¢;/e2)].
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576 M. Janssen and S. Roy

5 | € 1-6 Y St
9‘(9')<9]+§+(S_1)1—(.1:*{( 5 )1—&(1+;—_;)_E}' (A1)

As 0,(1) < 6,(r) and lim, .., 0,(t) = 6,, it follows that lim, ., 6,(r) = 6, and
therefore there exists an e; close to 0 such that 6+ (s1/0) <6+ €3 for all
#, > 6,(1) and 1 large. Hence, there are arbitrarily small values of ¢;,e5,¢3 such that

1 € C|/C2 s
0:(61) < b5 + €3+ (5 I) 1 —f}:+ 1—4(1 +:_:;)‘M

for all large ¢ and all #, > 6,(1). As s, is bounded, it follows that for any given f
we can choose ¢; much smaller than ¢, in such a way that for all 8; > 6,(1),
#,(#,) is arbitrarily close to 6,. |

In lemmas 1 and 2, we have some properties of the increasing sequence of
marginal qualities defined by the ‘forward-looking process.” One of the impor-
tant properties we have shown is that if we choose #; close enough to f,, then
the sequence is defined for an arbitrarily large number of periods (while
satisfying the conditions requiring the marginal seller to be indifferent and
earn non-negative surplus). Lemmas 3 and 4 analyse the possibility of defining
a decreasing sequence of marginal qualities through a backward-looking pro-
cess for a fixed large T, where the initial point is the marginal (lowest) quality
sold in the (7 — 1)th period, the next point is the marginal quality sold in the
(T — 2)th period, and so on.

More specifically, in lemma 3 we analyse a vector of decreasing marginal

qualities through a backward-looking process, assuming there is no entry of

goods after period 1. This is the ‘stock’ model as analysed in Janssen and Roy
(2002) and is purely a benchmark case. This is very helpful, since for any given
K, one can define K marginal qualities, through a backward-looking process in
our ‘true’ model, that are arbitrarily close to the first K marginal qualities of
the ‘pseudo’ sequence (by choosing 7 to be arbitrarily large).'®

The pseudo-sequence of marginal qualities that we construct has the follow-
ing properties (remember, no entry after initial period): if we choose a starting
point y (in the full sequence of equilibrium values this would correspond to
0,_,) in a certain interval, which we denote by (3(f),0], where 5(x) is a function
defined below, then we can show that there exists finite K> 1 such that
decreasing marginal qualities v{y), i=1.... K, are well-defined (statement iv
of the lemma says that the marginal seller is indifferent and it ensures that the
marginal sellers earn positive surplus), that there is a minimum distance of A
between two marginal sellers (statement v), and that the marginal qualities are
continuous and increasing functions of the initial starting point y.

18 Note that these K marginal qualitics in our true model actually correspond to the last K-periods
of a T-period cyclical cquilibrium.
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Let xy and x; be defined by

o- o= g
and
v[ﬁ—;xl] —x; =68(v — Dx.

It is easy to check that 6 < x| < f; and x; < xy. Define the function a(x) by

ax +x

(v — Da(x) = 1‘5[v( ) - (JE(_‘C)—‘ for x € [x.,0)
alx) =16 for x € [0, xo].
Define the function f(x) by
. Bx) + x B
2
B(x)=48 for x € [0, xi].

x] =6(v—1x for x € [x,0]

Straightforward algebra shows that a(x)< [3(x) for all x> x;. Define the
function w(x) = (a(x) + F(x))/2 > a(x).

For 0 < x <y, let n(x,y) =n"(x,y) = (x +¥)/2. If no entry occurs in period 1,
then n(x,p) is the average quality traded in the market in any period if seller
types in the interval (x,p) trade. Note that n(x,x) = x and that n(x,p) is a
smooth function.

LEMMA 3. There exists K, 1 <K <oo, functions v{(y), i=12,.....,K and inter-
vals [ay, b/, [ar_;, bi_if... ..., [a;, b;] such that
L a1 <a;j<bg,<b,i=1,....K—1
II. ay > w(f).by = O.ax < Ogax_1 > 0
HI. vilanby] — la;, b, i=1,.... K
IV. ~; is continuous and increasing on |ay, b1]. vAv) = y. v(y) = 0 and for all y €
lar, &) (i), 7dD)) — vdw) = Slvn(vdy), Yia () — v i=1.2,....,
K—1
V. Ny € [a;,b] and i = 2,..... K - inf (7;_1(»)) — %:(») > [(2—v)(v— 1)
(1—8*/*8=A>0.

Proof. For any y > f.x € |w(y),y| implies that
(v — Dx > §[im(x,y) — x|. (A12)

So that either there exists z € [f.x] such that vn(z,x) — x=é[vn(x,y) — x] or
v(0.x) — x > 8[vn(x,y) — x|. Define the functions v, 7; on [w(6).0] by
Y(») = 6 and v,(y) = y. From (A12) it follows that for any y € [w(6).6],
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either A.1 v(0.y) — y > 8[vn(3.0) — ¥
or Al dy(y) <7i(y) such that

(2 () — 1) = 8m(n()0)) — )l (A13)

If A.I holds for some y € [w(f).0], then 3 € [w(f),0], where

vi0.9) — 5 = 6[m(3.9) — 3]
Observe that y < 6; (otherwise vn(f.,y) — y < 0). In case A.l set aj = y.b) = 0,
K= 1. 1f A.II holds, then (A13) holds and we can set a; = w(f),h; = 6. One can
rewrite (A13) as 12(y) = (1 — 8)(2 — v/v)y + 66, which shows that ~, is conti-
nuous and increasing on [w(#),0]. Therefore, v, maps the interval [w(f),0] to an
interval [a,, b,], where ay = Y5(w(0)),h, = 12(0) = B(6) > w(d).

Suppose we have defined ~q, vi,-... ... s and interval [a,, bs),.....,
I.un—]-s bﬂ—]_]'s where

I. ~; are continuous and strictly increasing functions on [w(6).0]
1L v;[w(8).0] — [a.bi]i =2,......n— 1
L gy <a;<byi=2,...n—2
IV. a, >80,
V.o (i1 (0):7%00) — %) = 8 yr-1(0) — %),
i=12,....n—2(Al4)

Then, it follows that for all y € [w(6).0] : 7,_1(») > B(7a-2(0)) > A(Vu_2()),
which implies that

(= D1 () > 8[vm(Y—i(3),Ya—2(0) — Ya—i¥)]- (A15)

There are two possibilities:

either B.I  vi(0.7,-i(3)) — Yu—i(») = 6vn(V—i(1)Ya—2(3)) — Yu—iW)]
or B.Il  3v,(y) <7,—1(») such that (A15) holds for i=n— 1.

In case B.1 it is easy to show that 4 y € [w(#),f] such that

W](Qﬂ'n—f@)) - 'Yn—l@) = é[wf{'}'n—i@),']’n—lﬁ)) - 'Tn—i'@)]'

Further for all y € [7,0] there exists v,(y) <7._1(») such that (A14) holds for
i=n—1. By definition of $(f) and using (A14) it is easy to check that
'}‘n(?)) - 'Tn—l{ﬂ(g)) & [an—l,bn—ll- Therefore, '}‘n@ﬁ) g [ambn]a by > a,_| > b
and a, = 6. In this case set K=n, a; = y,h; = 0.

In case B.II, using (Al4), one can show that ~,(y)=(1—46)(2—v)/
Va—1(y) + 6va_a(y). So, Yn is contir‘l“uous and increasigg in y and n:
[w((?').,ﬁ]] o [ambnl- As ’Yn(g) = ’Yn—l(ﬂ(g)) =y and 'Yn('g) = Ir‘7.n < 'Yn—l(ﬁ) =
by_1, it follows that a,,<a,_; <b,<b,_;.

Next, we claim that K, as defined by the above construction, must be finite.
For otherwise, there exists an infinite sequence {vi(y)};-, satisfying (A14)
where v4{y) <~;—1(y) for all i. As {(»)}, is a monotonic bounded sequence,
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it converges to some v* > f# > (). Taking limits as i — oo on both sides of (A153)
yields (v — 1)y* =é(v — 1)v*, a contradiction. Hence, K < co.
Part V of the statement of the lemma follows from considering

D
Yir1 () — %) = [(1 = 6}Tv = 1] %) + &)

Defining A =~{y) — v;11(¥), it is easy to see that A is increasing in y{y). As
v{(¥) = wly,_i(»)), it follows that

(1-6)(2—v) 1ov Q2—-v)+26(v—1)
AZ{[I_ v Hz{v—1)+5(2—v) 2

] +5}’Y:‘—|U‘}

[ 1 [l = 8@+ 26— 1)
_{_Eﬁ+[ 2y2

] +5}"{f—|()")3
which, after some steps, simplifies to

B B B 2 _ - B 2
C—BR=U0~ ., o, =T vz”“ Vg=n>o. E

¥

The next lemma uses the result derived for the pseudo-model in lemma 3
and shows that in our true model (with entry every period), for T large enough
and for any initial point y lying in an appropriately chosen interval of qualities
close to the highest quality, we can define K marginal qualities (this is the same
K as in lemma 3, corresponding to the K last periods of T-period cycle) and
these marginal qualities exhibit similar continuity and monotonicity properties
as in lemma 3. When 7 is large enough, for each y the marginal qualities of the
true model 'yf"{y) are close to v{y), the marginal qualities in the pseudo model,
and the corresponding surpluses earned by the sellers of marginal quality are
close to that in the pseudo-model. The main reason behind this is that, as
shown in lemma 3, the minimum distance between the marginal qualities of the
pseudo-model (the minimum size of the interval of quality traded) over all
possible y is bounded away from zero. Again, as in lemma 3, we show that the
backward process of marginal qualities v7(),i = 1,... K, are properly defined
(statement IV of the lemma says that the indifference equation is satisfied;
statement V tells us that surpluses are positive) and that each marginal quality
is a continuously increasing function of the initial point y (statement III). It is
also shown that the Kth marginal quality v7(y) spans an interval around 6,
(statement II), and the surplus that this marginal quality makes lies within a
certain interval (statement VI). The latter two properties are important when
we want to connect the forward and the backward sequences.

LEMMA 4. For K as determined by lemma 3 and T large enough, there exist
intervals [ A;, Bi], i=1,... K and functions v} (), i=1,..K, 7I () = 04T (») = »,
() : [41,B1] — [4i,Bi], i=1,..,K, such that
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() A1 < A;<Biy1<Bi,i=1,..,K—1;
(ID By <0, Ak <0, Ax_, >0
(11D ~T(p) is continuously differentiable and I'(y) > 0, y € [4y, By], i=1,..K;
vy ™LA 0) — 1 @) = 8™ T AL 00) — AT O,
i=12,..K—1, y € [4;, Bi]
") ™ (L OAT ) = () > 0,i=0,1.2,.K—1;

(VD (v — k() < v KE0)5_100) — 780) < A/O)[(v — g
—(vA/2)].

Proof. Let the functions ~(y) and intervals [a, b], i=1,...K be as
defined by lemma 3 (satisfying I — V). Fix a positive value of u, small enough,
such that

aiyy < a; < Y1 (by — u) < i(b; — u). (A16)

Define d;=a;.;=v,(h; —u), i=1,...K. Observe that the +;s are continuously
increasing functions mapping |d;.;] to [d.;], i> 1. From (A16) it follows that
Giy < d;<bipy < b; and dx < 0, < dx_,.

For any fixed £ >0, let S(h) = {(x,p): 8 < x < y <60, y — x> h/2}. It follows
that 5'(x,y)—n(x,») uniformly on S(h) as t—oc. Moreover, for any p >0 and
K> 1, 3 T(p) such that for all 1 > T(p) + K:

0 <nlxy)—n'(xpy)<p  V(xyp) € S(h).
Define: &(p) =0,
&i(p) = 2p,

&(0) = [(14+8) + )1~ )n-1(p) + &ra(p) + 2p for n =2, ., K.

Check that forany n=1,....K, £,(p)—0 as p—0. Further, there exists constant
M >0 such that &,(p) < Mp, n=1,..,K.

In what follows, we shall impose restrictions on how small p should be.
Choose T > T(p) + K and any y € [d1.h]. Set vJ(y) = 0.47(y) = y. Using
(A13), note that [vi(y2(») — &1(p).y) — y] — 8[vn(».0) — ¥] = —v&i(p)/2 so that
(for a fixed u)

™ (200 — &) — ¥] — 6[m" ' (1.0) — ]
= [{m(r() — &(p)y) — ¥} — 6{m(1.0) — »}]
+v[n" ! (20) — &().y) — n(20) — &i(p)Y)] + 6v[n(r.8) — n" (1.0)]

vE1(p)
ST

+ 6py = —v(1 — d)p < 0. (A17)

Similarly, it can be shown that
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V‘E'z{p) —wp=0.  (AI8)

[n" () + E4oy) — 5] — 8] (.0) — 5] >

From (A17) and (A18) and the continuity of the conditional expextation 7',
n'", it follows that there exists v (y), where

1) —&(p) <M (¥) <7(¥)+E&(p) and

, (A19)
v (v ).y —y =6l (1.0)—y].

Also observe that by definition of by = 6 — u, and for p small enough,
T (17,0) — 0 > —vp+ [vn(&l,ﬂ) — 6'] > —vp+vp=0.
It is easy to check that 7 (y) is a continuously differentiable function on

[d;. b,]. Using the expression for 5’ given in (4), differentiating through both
sides of (A19) we obtain

¥ (I'—-1){y— Q)Z - ‘ ;
)| =1 =T —=
(2) [ (T — )y —(T — 217 () - E)zl T2 () = ( )( 2)
[ T-2(f0)-0° . 1607
(T Dy —(T—200) -0 (19— —1y—0

)2] . (A20)

b =

Observe that

(T -0’ y (T—1)(O— 0
(T =Dy —(T-20f () ~0)" " (T -2~ 1) 80— (T—2a(p))’
» (T— 1)@

((T—z)fi(c)—_ﬂ—ﬂ— (T—2JC|(P))2.

The last expression goes to zero (uniformly in y € [d,,h;]) as T — oo and for p
small enough. Similarly, it can be shown that for p small enough

(T -2 - 6)°

— 0
(T — 1)y — (T =211 () — 0)°

(uniformly in y) as T — oco. Hence, for T large enough and p small enough,
(A20) implies that v7"(y) > 0 for all y & [dy.by].

Suppose that we have defined continuously differentiable functions
YFWAT () > 0, y € [d1,h1], i=2,..,n— 1 such that
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582 M. Janssen and S. Roy

Vi) — &n-ilp) <7 (1) < 7iy) + &n-i(p) (A21)
" L 0 ) = 0)
= ﬁ[vnT_j-H((YfT(_})): (Y;tl(y)) o ’T;T(y)] ] i= l'.! 2: -y 2.

Then, observe that

()Y ) — 7 ) — [y )00 — v )]
<M1 ) + &a-2(p) — (1 = O)(Va-1(¥) — &n-2(p))
- 6”](%1—](}') . fn—l(p)s')’n—z(_}’) == £n—3(p))

. &
= F0+9+1-9]ea(p) + T (). (A23)

(A22)

As 71 () —vdy)>A=>0, there exists p small enough such that
) —~T(y) > A > 0. Using (A23) and later, the definition of £,_i(p), we
get

[T () — &1 ) — 91 0] = 8T (a1 AT () — 9 )]
= () — &1(D)7m 1)) — Vo1 W] — Sn(ga1 (972 (0) — Y )]

+ 30" () — L1 (@)A1 (0)) — ) — Earr(P)vn ()]

— 8" " (a1 )2 — 11 (D)2 ()]

v } ; by ; vE1(p
< (0 48+ -6 20+ &30+ vp 12

= ; [{(1 +6) +%{1 — §)}na(p) + 8&—3(p) + 26p — Eui(p) | < 0.

Similarly, it can be shown that
D1 0)) — 11 3) — 1)) — 1 D))
2 : ,
> —(3) {0 + 8+ = 9}e2() + 8630,

so that

v () + Eac1 ()1 7)) — Yy ) — 8[vn” " (et D) Y2 (0) — Y )]

= —(g) {{(1 +48)+ %(1 — 0)}a2(p) + 86n-3(p) + 2p — &u1(p) | = 0.

Thus, there exists 77 (y) such that

W) — &a1(p) < 73 () < 12(¥) + &aar(p) (A24)
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T T3 00— )
=6l " L0000 - 400 (A29)

Also, observe that

" (T )AL 0)) — 1)

] L H G ) oY 6%) B i D)
slvn(vm_ )2 3) — v () — vpl

8[(v— Dyp_,(» — vp] = 8[(v — 1) — vp] > 0.

From (A25), and the exact fumztional forms of n”, it follows that () is
continuously differentiable on [d,.h;]. Differentiating through (A25) yields

B
=

v (T =)L () — 0 . B W
= |1~ N=(1-=8(1-=
2[ ((T—mz"_.o»J—(T—n—1}7,3"@)—6)2]7" 0= -8(1-)i 0
_vl (T —n—1D)(I(y) — 0) B

2|((T — w2, 0) — (T —n— 1T () — )

(T —n+ D(47 () — 0)° 1 '
(T —n+ D7 ,0) — (T — nnf40) — 6)°

(T =m0 - 6)°
(T —n+ 100 — (T —ny () — 8

1+

T ¥
' &—
Tn—1 )+ 2

)2} M2 (). (A26)
Using the fact that

Y0 =)= 1D — €n—2(0) — Ya(¥) — €n—1(p) > A — (€a—2(p) +€n—1(p))

and v, () =711 (1) = A+ (en-3(p) +€n2(p)),
it can be shown that for p small enough, as T — oc:

— the term in square brackets on the left-hand side of (A26) converges to 1
uniformly in y € [dy.hy];

— the term in square brackets multiplying q':_l’(y) on the right-hand side of
(A26) converges to 0 uniformly in y € [dy,h].

Hence, there exists p >0 small enough and 7 large enough such that for all
¥ € ldr.hl, 7I'(y) > 0, and, by induction, there exists p >0 and 7 large enough
such that for all 7> 7, v (y) is strictly increasing in y on [61.5,, n=1,2, ..., K.

As v (@) € [yil@) — &p).vi@) + Edp)] = [a: — Ep).ai + E(p)] and [ (br)
€ [vilbr) — &(p)ihy) + Ep)] = [bi — &ip).bi + &i(p)], we can choose p small
enough so that
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yE (@) < A @) <7 (by) < AT ().

As ~I's are continuous, let [4; Bj] denote the image [d;,;] under the mapping
4T. Then,

Ay < A; < By < By, i=1,.,K—1.

Using the definition of K from the previous lemma, for p small enough,
AK<9$.

To prove VI, define sx = vn’ X (vF(»).7f_,(») — v&(») as the surplus of v7(»)
in the period where 4T |(») is the highest quality traded. To prove the first
inequality of VI consider sx — (v — 1)yL(y). For large enough 7 and using V of
lemma 3, it is easily seen that this expression is strictly larger than 0.

To prove the second inequality of VI, we distinguish two cases:

(i) there exists a %, (v) > 6 such that
" FH (g 1 k) — 1k () = sk (), or

(i) v"*H Ok 0)) — 7E) > S5k ().
In the first case (the second case works similarly and won’t be treated expli-

citly), we consider vi(v5 (M. 72 (») — 72 (») — [(v — Dyg(») — vA/2]. For large
enough T and using V of lemma 3, this expression is strictly smaller 0. |

Finally, we can put all the elements of the proof together. From lemma 4 we
know that there exists a 7% such that for all 7> 7* in the backward sequence
surpluses of marginal sellers are continuous functions of the starting point y.
Moreover, for all 7> T* all marginal qualities 77 (y) are increasing functions
and therefore invertible. This allows us to rewrite surpluses as functions of the
marginal sellers themselves: S.E(B)- As fy,"';(_y) covers an interval around f,, and
as the forward sequence #,(f,) with t = T — k covers a subset of this interval, we
can actually redefine the surpluses from the downward sequence in terms of a
continuous function of @) : s%(#;). Using the fact that this surplus is within a
certain interval, we know that for any #, in the relevant interval [é.(T),f),v], the
surplus sT(6)) constructed in this way is strictly positive and smaller than
[(v—1)8 —vA/2]/6. The above argument holds true for any T larger than
some T*. On the other hand, from the forward process we know that on the
same interval surpluses are a continuous function ranging from 0 (when
#,=480,) to a number close to (v— 1)f8/6. More particularly, lemma 2 implies
that we can choose any particular value of the surplus (or in terms of lemma 2:
a particular value of ¢) for the forward process larger than [(v — 1)f — vA/2]/6
such that there exists a particular value of #; and a ¢ such that this surplus is
reached within ¢ periods starting from this particular value of #,. If this value
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of 1 is larger than 7%, we can appeal to the intermediate value theorem to show
that there must be a #; where the surpluses of the above constructed processes
and the forward process are identical. As the forward and the backward
sequences satisfy the necessary equilibrium properties, it follows that starting
from this particular ¢, there is an equilibrium cycle up to . If this value of ¢ is
smaller than 7%, we can choose a small enough value of ¢ (a surplus close
enough to (v— 1)#/6) in such a way that the value of ¢ needed to reach this
surplus is larger than T%*.

Choose an ¢ >0 small enough and consider the corresponding large 7 and
the functions s4(#,) and 64{(¢;) as defined in lemma 1 and é.{T} as defined in
lemma 2. It follows that for a given 6, = GA;(T} there either exists #4,, such
that vn'(04,0,41) — 04 is larger than [(v— 1)84(6,)] —¢/6 or 8[vi(07.0) — O]
< .vT(F)T(ﬂA,(T)). In the last case, an intermediate value argument can be used
to show there is a T-period dynamic equilibrium reaching #. To see this note
that at ¢, = 6, 6'[vn(f)r,9) — 0] > s7(67) = 0. As s4(6,) and 6,(6;) are conti-
nuous functions, there must be a 6, with 6,(7) <8, <6, such that
8[vi(07.0) — 67 = sr(07). So, we can concentrate on the first case. Moreover,
0s < 0r(6)) < 0 + & for all 6, > 6, > 6,(T).

Recall from lemma 4 that we have defined functions ~7(y) and
" (yT ()T ,(») on the interval [4,, B], i=1,...,K. As 77'(y) > 0 (see
lemma 4), the functions ~/(y) are invertible, i=1,...K, on the interval
[él,l;lj. Hence, there exists a continuous increasing function g:[AK,BKj%[d.,I;IJ
such that 'y,"'('(g(ﬁ)) =40 for all # € |Ag,Bg|- This allows us to redefine
sE=wmT K E)AL () —1L(y) as being defined on [Ag,Bk]:sk(f) =
v KO~ | (2(0) — 6. It follows that sL(#) is a continuous function on
[4x.Bk]. Furthermore, 1[(v — 1) — vA/2] > sE(6) > (v —1)0 > 0 for all 6 €
|44, Bk]. As we can choose € such that Ax < 8, < 6, + € < Bg, we can use the
function 6,(6,) to write sL(67r(6;)) as a continuous function defined on
0 > 0, > 6y(T).

So, at 6 =60,, st = vT(O7,0741) — O = 0 < sL(0;). At 0; = 0y(T), we know
that v’ (0, x.07—xs1) — 07—k is larger than [(v — 1)0;_x(0,) — ¢]/6, which in
turn is larger than sL(67_x(6))), since € is close to 0 for large 7. As s4(6,),
#4(#,) and ,v‘{:(ﬁr(ﬁ.}) are continuous functions, there must be a #; such that

s7(0,) = sk (07(6))). =l

Appendix B: Proof of other propositions

Proof of proposition 4. It is clear that repeating the static equilibrium is an
equilibrium in the dynamic model and that this equilibrium is weakly mono-
tonic. We will first show that there does not exist another equilibrium sequence
{6,};7, with #,=6,_, for some . Suppose that there was such a sequence and
that 7 is the first period in which #.=#,_,. A first implication is that #._; <#,,
since otherwise s, < 0. A second implication is that p.<p._;, and hence, that
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s <s._1. There are several possibilities as regards #,._; and 7: 7=2 and
0._1<b, 6,_,=8or 0,_,>60.5 In all cases, s,_; >0. This in turn means
that there must be a k> 1 such that s, _; = &' (pr+x —0-_1), and hence, that
5 < 6k+](pr+;( —6._4) <5k(p7+k —6,). This implies that #. prefers to wait until
period 7+ k before selling — a contradiction.

We will next prove that there neither exists an equilibrium sequence {#,},"
with 6,>#,_,. The proof is by contradiction. Suppose that there exists such a
sequence. Then, it must be the case that there exists a 6 < @ such that
lim 0, = 6. We will distinguish two cases: (a) 8 >0, and (b) 8 =0,. (It is
Clear that in equilibrium it cannot be the case that 6 < ,, since there will be
sellers # > 6 who prefer strictly to sell, but will never do so according to the
stipulated equilibrium).

In the first case, we can take a (small) fixed ¢ >0 and a large T such that
6,> 6, + ¢ for all ¢ > T. Equation (A4) in lemma 2 expresses #, as a function of
#,_, and s,_;. It is clear that for a given #,_,, f, is an increasing function of s,_;.
Combining these two facts and substituting s,_; =0 in (A4) gives

ef_ar_.>(“")e [—1+\/ 00 06— 6)|
v v — )2,

For large enough ¢, the expression [W(2 — v)(0,_1 — O)(0,_1 — 6,)]/[(v — 1)*16* ]
is strictly smaller than 8. As v/1 + x > | + x/4 for all x € (0,8), this expression
is larger than [(2—v)(#,_1 — )0, —6,)]/[4(v — 16, ,]. As there exist a
(small) fixed ¢ >0 and a large T such that for all t > T, 6, > 0, + ¢, this expres-
sion is larger than A/t, for some constant A > 0.

Hence, for all r>T, we can write 0, =607 + X ;(0rp1 — k) > O+
X, ;A/k. As lim X! . A/k = oo, this implies that lim 9 = oo. This contra-
dlcts the fact tﬁaf“there exists a @ < @ such that lim 9_’ 6.

Let us then concentrate on the case 8 = 6,. In 'This case for large ¢, 6, is close
to but strictly smaller than #,, s, >0, and lim s, = 0. This implies that for any
¢ >0 there exists a T such that for all 1>7", < e. Equation (AS) in lemma 2
tells us that for 8, < 6,, as,.q >, if

‘ 11 I 2(0, — - 11
.s;[(i—i—l)(s—a)(a— 5 )+ 5 ](2('. l)(r+l)( )9;

This expression can be rewritten as

2(v — 1)6,

¥ 2—» 20,0 -
+ + !‘+1}(1——;

For large 1, the R.H.S. of this expression is increasing in f,. So, we can certainly
argue that for large 1, as, | > s, if
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2(v — 1)8
8 < 7{_1; 1. %, .
This contradicts the hypothesis we started with, namely, lim s, = 0. [ |
—o0

Proof of proposition 5. The proof is by contradiction. Suppose that for all 1,
#,<6,. It is easy to see that it cannot be the case that sup, #, < f,, as this would
imply that there are qualities # > sup, ¢, that would make a strictly positive
surplus by selling, but they would never sell in such an equilibrium. Also, it
cannot be the case that for some ¢, #, = 6,. This is because in a non-monotonic
equilibrium 6 < #,, but this would imply that the marginal seller in the first
period ¢, such that #,=#6,, makes a strictly positive surplus. Hence, by con-
tinuity there would be qualities # just above #, that would make a strictly
positive surplus by selling, but they would never sell in such an equilibrium.

We are left with the case that for all ¢, ,< 6, and sup, 8, = 6,. In this case
there has to be an increasing subsequence {644, },, With

(1) 9,-_,_;{[ < 9,.,.,{-2 e
(ii) Sitk, = 6k2_k'(ﬂ:+k2 == 91+k,) and
(i) .JI_)T& O, = 9.%}}19& Pisk, = O and kll_’r& Stk = 0.

Choose +k, to be a large number and let 6, be close to f,. Write
eg=0,— 0., Take t+ky and 6, as fixed numbers. Define ¢° to be the
expected quality in period ¢ + k; conditional upon 0, =6, . We will distin-
guish two cases. First, there is a fixed ¢, independent of ¢, with
0 <ve<(l—08)(v— DOig, — (5+ )y such that 6°>6,; —e. We will argue
that in this case that 6,4, >0, If 6°>0,.4 —¢, then s,y = (v — DOy, —
ve — (1 =301k, — Or1k,), which is strictly larger than (v — 1), — ve—
(1 —Dep. Using 5,55, = 8 ' (px, — O.44,), it follows that

(v — Db, —ve—(1 =3¢y
Sipk, = = ](ﬁkz—h = - ('9{+k12 =i 9:+k1)-

However, since for any 1, s, cannot exceed (v— 1)d,, this implies that it is
necessarily the case that (v — 1 +8)0,,4, — ve — (1 — v/2)eg < v, 1. If € satisfies
the condition above, then this implies that 6, >6,. i

Second, suppose there exists 0<e<[((1—&)(v— 1)/ O ik, — (0, — 0,44,)
with 0 <6, —e€. There is a finite x < k(0;44, — 6) < k(65 — 6)) such that we
can write

5 Orsi +0,s
x0° + (+ k1) Ok, — Orik) 5

X+ (t+ k) Ok, — Orikg)

Sitky =V = '9;+k1-

The sign of the derivative of s, with respect to 0,4, is the sign of
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= (1 —;)(: + k)¢

— (1 — %)(; + K6, — vxt

: + Q2 -9+ k)0 ke — x]9:+k1 + 2x0, 44,

k
2
X

t+-k

At 0,4k, = 0,44, this expression reduces to vx(f, 4k, — 6°) — (x*/t + k), which for
large 1, is strictly positive in this second case. Hence, we can conclude that in a
right neighbourhood of ¢4, 5.4, is increasing in #,,; and that after reaching
a maximum s, will be decreasing in 6, . Moreover, at 6, =0, ,, we know
that s, 4 = .\';+k",f6"‘_""’ > 5,4x,/0 and it is easy to show (see lemma 2 for a similar
calculation) that for large  + ky and a given 6, , the maximum s, is close to
(v — 1)04,. Finally, whenever s, is decreasing in ¢, , it is decreasing at a
rate approximately equal to (1 —(v/2)). All observations together imply that
either s,z > 8,44,/6 or 6, will be larger than ¢,. Whichever applies, it contra-
dicts requirement (iii) above. [ |

Proof of proposition 6. For §* € (0,.0], suppose that lim infs;; 7(5, 6%) < oc.
Consider a sequence {6,}T1 such that {7(5,.0%)} is bounded above, say, by
K < 0o. Then for each n, there exists an equilibrium where a seller with quality
#* entering in period 1 sells her good in a period less than K at a price we shall
denote by p(8,,). Now, for each n, consider the first period of positive trading in
such an equilibrium and let p,(4,,) be the price and 6,(4,,) the highest quality traded
in that period. Obviously, #,(8,) <#,, and the first period in which #* is traded
must be later than this period. Let 7, also indicate the time difference between
the first period of positive trading and the first period in which #* is traded.
The seller with quality (5, prefers to sell in period 1 rather than in period
Tp, and as 7, < K, we have pi(8,) — 01(8,) = (85)(p(6n) — 01(6n))- As p1(8,) <6
and as p(6,) > 6#* (because quality #* is traded in period 7, at price p(8,)). we
have 0 — 0,(8,) = 650" — 6,(6,)). As 6,(6,) € [6.6,] for all n and {6,}T1, taking
n—oo on both sides of the inequality, we have #,> 6*, a contradiction. |
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