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The following Appendix contains supplementary materials for the paper “Dynamic pric-

ing with Uncertain Capacities”. It is organized in the following way. Section A discusses

the equilibrium outcome under an alternative tie-break assumption, when firms set the same

price. Section B relaxes the assumption that firms are able to observe each others’ prices.

Section C contains additional materials on the extension of Random Arrival of Consumers

in Section 4.3.1 from the main paper. Similarly, Section D expands on Section 4.3.4 about

Captive Consumers from the main paper. Finally, Section E displays additional graphs for

different model parameters’ values.

A Alternative Tie-breaking Rules

In this part, we show that the equilibrium outcome of the game with hidden capacities

does not depend on the specific tie-breaking rule that we assumed in the main paper. In

particular, we are interested in the alternative tie-breaking rule that allocates the demand

evenly among all firms that charge the lowest price instead of randomly allocating all demand

to one firm.

First, as mentioned in footnote 11 of the main text observe that the pooling equilibrium

outcome can be supported by an asymmetric equilibrium in which one of the firms, say firm 1,

charges p = α, while its rival randomizes in an interval (p, p+ ε), for ε > 0 sufficiently small.

In this case, there are no ties in equilibrium (so the tie-breaking rule - whatever it is - does

not apply) and the same equilibrium outcome emerges. In particular, a constrained firm 2

has no incentive to deviate as its expected (second-period) profit equals α and any deviation

in the first period cannot yield more profit. Like in Section 4, whether an unconstrained

firm 2 has an incentive to deviate depends on the out-of-equilibrium beliefs if firm 1 observe

its rival sets a first-period price smaller than α. As only unconstrained firms may have such
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an incentive to deviate, it is natural that firm 1 believes a deviating, undercutting firm is

unconstrained, resulting in zero expected second-period profits, implying that a deviation

by an unconstrained firm 2 is not profitable.

Second, the pooling equilibrium in pure strategies can also be supported by any tie-

breaking rule. Indeed, consider the pooling equilibrium in which both firms charge α in the

first period and then randomize in the second period in [α, 1]. Moreover, consider that given

the first-period prices firm i’s first-period market share equals qi. Notice that the on-path

continuation game following such a split of demand in the first period is such that with

probability 1−α firm i is unconstrained while with probability α firm i has capacity to serve

exactly 1 − qi share of the market. It follows that the continuation profit of a constrained

firm is (1−qi)α, and this firm will randomize in the interval [α, 1]. Thus, the overall expected

pay-off of a constrained firm i is equal to α and independent of qi. Deviating in either period

cannot improve upon this expected profit. The unconstrained firm setting the lowest price

in the support sells for sure and obtains α, which is also its maximum continuation profit.

Thus, the overall expected pay-off of a constrained firm i equals α(1 + qi). For the same

reason as above, an unconstrained firm also does not want to deviate in the first period.

Thus, for any tie-breaking rule the pooling equilibrium remains an equilibrium.

Finally, consider the semi-separating equilibrium strategies described in Section 4.1. If

a tie occurs, it must be at the highest equilibrium price p̄. If a firm sells quantity qi at

p̄, it expects to make qip̄ + (1 − qi)θ(p̄) = p̄, regardless of qi. Hence, the same first-period

equilibrium strategies constitute an equilibrium (together with the natural adaptation of the

second-period strategy).

B Hidden Prices

In certain markets it may be difficult for a firm to observe its rival’s price. Since prices act as

signals, it is natural to ask whether the results would significantly differ in an environment

in which prices are unobserved. We now argue that the pooling equilibrium outcome we

characterized in the beginning of Section 4 is the natural outcome for such markets as it is

the unique equilibrium outcome.

First, just like in the case of alternative tie-breaking rules, it is easy to see that the

asymmetric equilibrium that induces the pooling equilibrium outcome remains an equilibrium

regardless of the information about prices. Second, it is straightforward to check that the

symmetric pooling equilibrium breaks down if prices are hidden. As deviations are not

observed if they do not result in another firm selling in the first period, an unconstrained

firm can undercut its competitor and pretend that it simply was lucky in the first period and
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was selected by the tie-breaking rule. For this very same reason, a separating equilibrium

cannot be supported. Third, a similar argument can be used to show that no semi-separating

equilibrium can exist in this case. Recall that in a semi-separating equilibrium, the expected

profit of selling the second unit in the second period must be the same, regardless of the

price chosen in the first period. This requires that higher first-period prices induce higher

continuation profits. But any firm that charges a marginally lower price in the first period

can simply mimic the second-period behavior of a firm who charged a higher first-period

price, making such a deviation profitable (as it is unobserved).

C Random Arrival of Consumers

In this Appendix we show that not only the pooling equilibrium can be extended to random

arrivals of consumers, but also the semi-separating equilibria. Given that in every period a

consumer is present only with probability λ ∈ (0, 1), the second period equilibrium profit of

the highest-pricing firm is λ2θ(p), where θ(p) is the posterior probability that it will be a

monopolist in the second period. This is also the equilibrium profit of her rival (in case it

remains active). In the first period, then, a constrained firm who charges p expects

Πc(p) = Q(p)
(
λp+ (1− λ)θ(p)λ2

)
+

∫ p

p

−Q′(x)λ2θ(x)dx,

while the unconstrained firm expects a profit of Πc+Q(p)θ(p)λ2. As in the main model, this

implies that Q(p)θ(p) must be a constant. The first order condition reads:

Q′(p)λ
(
p− θ(p)λ2

)
+Q(p)λ(1 + (1− λ)λ2θ′(p)) = 0

since Q′(p)θ(p) +Q(p)θ′(p) = 0, we obtain

p− θ(p)λ2(2− λ)− θ(p)

θ′(p)
= 0

which yields

θ(p) =
−p

λ2(2− λ)W−1

(
pc

λ2(2−λ)

) .
At the upper bound, we must have that the constrained firm is indifferent between selling

or not: λp̄ = λ2θ(p̄), so θ(p̄) = p̄/λ. The unconstrained firm must also be indifferent. Hence,

2θ(p̄−) = θ(p̄) = p̄
λ
. Hence,

λ2(2− λ)W−1

(
p̄c

λ2(2− λ)

)
=

p̄

2λ
.
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Solving this equation yields

c =
1

2λ
+ λ2(2− λ) log(2λp).

Using the same arguments derived in the Proof of Proposition 4, we obtain that for every

p̄ ∈ [ λα
2−λ , λ], there exists a semi-separating (pooling if p̄ = λα), such that the first period

prices lie in [ λα
2−λ , p̄] and the second-period prices in [θ(p)λ, 1].

D Captive Consumers

Complete Information about Capacities Each firm has the same probability σ ≤ 1
2

of capturing the whole demand of the arriving consumer. There are 3 cases: (i) both firms

constrained, (ii) one firm constrained, one unconstrained, (iii) both unconstrained.

Case (i): Even in this simple case with two constrained firms, which can split the market,

the equilibrium from the perfect competition case does not carry on. In other words, an

equilibrium where both firms price at the monopoly price in the first period does not exist.

If it did, both firms ex-ante expect π = 1
2
1 + 1

2
(1 − σ) = 2−σ

2
as the firm that does not sell

today, expects 1− σ tomorrow. Deviations upwards are not profitable, but a firm deviating

downwards expects πC(1−) = (1− σ)1− + σ(1− σ) = 1− σ2 > 2−σ
2

. In this sense, there also

does not exist an equilibrium in pure strategies, where the firms price at a price p∗ < 1 as

the same incentives to undercut arise.

Looking for an equilibrium, where both firms mix implies that the firms have an expected

profit of

πC(p) = [σ + (1− 2σ)(1− FC(p))]p+ [σ + (1− 2σ)FC(p)](1− σ)

The firms need to be indifferent between selling at p or pricing at the monopoly price.

This implies that their mixing strategy is given by FC(p) = 1−2σ+2σ2−(1−σ)p
(1−2σ)(1−σ−p) with support

p ∈ [1−2σ+2σ2

1−σ , 1]. Both firms’ ex-ante expected profit is equal to πC = 1− σ + σ2.

In the limits of σ ∈ [0, 1
2
] the lower bound of the price distributions converges to the

monopoly price. Hence, as σ → 0 the equilibrium converges to the Dudey equilibrium,

as firms split their sales among the periods. For σ > 0 there is paradoxically stronger

competition, even though, competition gets relaxed. The reason lies in the continuation

profit 1 − σ < 1. The Dudey equilibrium requires that firms are able to agree for equal

probability of sale in the first period at monopoly price, however this does not translate

to equal split among periods, as there is always the chance that the consumer tomorrow
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is captive of the sold-out rival. This effect gets mitigated as σ becomes large and σ → 1
2
,

as then the market is exogenously evenly split between them in each period, leading to an

optimal strategy to maximize the price and increase profits.

Case (ii): The Dudey equilibrium, where the constrained firm can sell in the first period

at the monopoly price, no longer exists. The reason lies in the fact, that even if both firms

are active in the second period, they expect strictly positive profits of σ. This gives an

incentive for the unconstrained firm to undercut the monopoly price and sell today and

expect a positive profit tomorrow.

There does not exist an equilibrium, where the unconstrained firm pushes the constrained

firm to sell first at a price lower than the monopoly price. The reason is that the uncon-

strained firm has a share of captives to which it can always sell, thus, would charge them the

monopoly price. A constrained firm would then have an incentive to increase its price to the

monopoly price as well. Therefore, the monopoly price 1 should always be in the support of

the equilibrium strategies of both firms.

Following the intuition of Dudey, where the unconstrained firm prefers to charge higher

prices and let the constrained firm sell out first, we look for an equilibrium, where the

unconstrained firm puts a mass ω at the top of the price distribution. The ex-ante expected

profits of both firms are given by

πC(p) = [σ + (1− 2σ)(1− FU(p))]p+ [σ + (1− 2σ)FU(p)]σ

πU(p) = [σ + (1− 2σ)(1− FC(p))](p+ σ) + [σ + (1− 2σ)FC(p)](1− σ)

The optimal mixing strategy of the constrained firm, keeping the unconstrained firm indif-

ferent between charging the monopoly price and any price in the support p ∈ [σ+(1−2σ)2

1−σ , 1)

is by mixing according to FC(p) = 1 − σ(1−p)
(1−2σ)(p−(1−2σ))

. The unconstrained firm mixes over

the same interval according to FU(p) = p−(1−2σ)
p−σ − σ(1−p)

(1−2σ)(p−σ)
with a mass point ω = 1−3σ

1−σ

at the top. For σ ∈ [0, 1
3
] this equilibrium retains some main characteristics from the perfect

competition case. Namely, the unconstrained firm charges higher prices expecting to be a

monopolist in the second period, while the constrained firm charges lower prices in order to

sell first and avoid competition later. However, this is an equilibrium as long as σ ≤ 1
3
.

For σ ∈ (1
3
, 1

2
) the unconstrained firm prefers to compete for demand in both periods,

as competition is relatively weak and the continuation profit is relatively high. In this

case, the constrained firm prefers to aim and serve its captives at the maximum price,

therefore it is the one setting a mass at the top. The unconstrained firm mixes according

to FU(p) = 1 − σ(1−p)
(1−2σ)(p−σ)

over the support p ∈ [2σ, 1), while the constrained firm mixes

according to FC(p) = (1−σ)(p−2σ)
(1−2σ)(p−(1−2σ))

with a mass ω = 3σ−1
2σ

at the top. Interestingly, here as
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well, as σ → 1
2

the lower bound of the distribution converges to the monopoly price reflecting

the decreasing competition and the convergence to even split of the market like in the case

with two constrained firms.

Case (iii) with two unconstrained firms is equivalent to repeated imperfect Bertrand

competition, where both firms mix over the interval [ σ
1−σ , 1] in each period according to

F (p) = 1− σ(1−p)
(1−2σ)p

and expect a profit of 2σ.

Incomplete Information about Capacities Let π(θ) denote the equilibrium contin-

uation profit (of both firms) when the firm who sold is believed to be constrained with

probability θ and let π̃(p) := π(θ(p)). In particular π(θ) = σ + (1− 2σ)θ is affine in θ.

Proposition 1. There exists some σ̄ ∈ (0, 1/2) such that

• If σ < σ̄, constrained firms randomize in (p, 1), and unconstrained firms randomize in

(p, p̄), and θ(p) is increasing and convex in (p, p̄) and θ(p̄) = 1.

• If σ > σ̄, both types of firms randomize in (p, 1), and θ(p) is increasing and convex in

the whole support, with θ(p) ∈ (α, 1).

Proof. The presence of captives implies that the upper bound of the price distribution

must necessarily be 1 and that there are no mass points. To see why consider any upper

bound lower than 1 and notice that the constrained type must be indifferent between selling

now at that price or not (for otherwise, it would undercut). However, in this case it can

profitably deviate to a higher price that has the same continuation profit in case it does not

sell but a higher profit now. Captives makes this deviation strictly profitable. The same

argument shows that no mass point can exist in the interior of the interval. To see that no

mass point can exist at the upper bound, notice that captives imply that the continuation

profit is bounded above by 1 and so constrained firms would prefer to undercut the mass

point than expose themselves to losing to a rival with the same price.

It follows that there are only two types of equilibria, determined by some cutoff value

σ̄ (see below). First, if σ > σ̄, the equilibrium involves both types of firms randomizing in

an interval (p, 1], with p being the lowest price that a constrained firm is willing to charge.

Namely,

(1− σ)p+ σπ(α) = σ + (1− σ)π(α).

In words, the constrained firm must be indifferent between charging p and selling to any

consumer that is not captive with its rival now than charging the monopoly price, selling

to its own captives. In both cases, the continuation profit in case of not selling is the same
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because not selling at the highest or the lowest price is uncorrelated with the type of the

opponent. This yields,

p =
(1− 2σ)π(α) + σ

1− σ
.

The same argument used as in the Proof of Proposition 4 in the case of homogeneous

consumers shows that the continuation profit following any price in the support p is given

by

π̃(p) = − p

W−1(−cp)
,

where c is pinned down by the boundary condition π̃(1) = π̄. In particular, c(π̄) = 1
π̄ exp( 1

π̄
)
,

where we make explicit the dependence of c on the specific continuation profit at the upper

bound of the price distribution. Finally, we can use the isoprofit condition of unconstrained

firms to obtain

π̃(p)(1− σ) = π̃(1)σ = π̄σ.

Combining these two yields the following equation:

1 +
1− 2σ

σ
π(α) = −π̄W−1

(
−c(π̄)

(1− 2σ)π(α) + σ

1− σ

)
.

This equation has a solution in π̄ ∈ (π(α), π(1)) for every σ ≥ σ̄, where σ̄ is implicitly

defined as

1 +
1− 2σ̄

σ̄
π(α) = −π(1)W−1

(
−c(π(1))

(1− 2σ̄)π(α) + σ̄

1− σ̄

)
.

Numerical results show that σ̄ approaches 0 as α→ 0 and σ̄ approaches 1/2 as α→ 1.

If σ < σ̄, unconstrained firms cannot be lured to charge p = 1 no matter how high the

continuation profits. In this case, the equilibrium requires that θ(p) = 1 for p ≥ p̄, for some

π(1) < p̄ < 1. Constrained firms randomize in (p̄, 1) trading off higher selling probability

against a higher markup. This yields the following randomization condition:

pQ(p) +

∫ p̄

p

−Q′(y)π(y)dy + π(1)(Q(p̄)−Q(p)) = σ +

∫ p̄

p

−Q′(y)π(y)dy + π(1)(Q(p̄)− σ).

Notice that the continuation profit is flat for p > p̄. Hence:
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pQ(p) = σ + π(1)(Q(p)− σ)

This equation can be readily solved to obtain

Q(p) =
σ(1− π(1))

p− π(1)
.

As before, in (p, p̄) both types of firms randomize. Their continuation profits are given

by:

π̃(p) =
−p

W−1(−cp)
.

We can solve for c(p̄) using the fact that π̃(p̄) = π(1), resulting in

c(p̄) =
1

exp
(

p̄
π(1)

)
π(1)

.

Finally, the equation that determines p̄ is analogous as the case discussed before. Namely,

π̃(p)Q(p) =
−p

W−1(−c(p̄)p)
(1− σ) = Q(p̄)π(1).

E Additional Graphs

In section 4.1 of the main paper we derived a continuum of semi-separating equilibria, which

differed in the interval of prices [α, p̄] over which firms randomized their strategies. In par-

ticular, two semi-separating equilibria differ in the upper bound p̄. As stated in Proposition

5 and illustrated by Figure 2 in the main paper, a higher p̄ is associated with lower ex-

pected profits, as there is lower probability a constrained firm sells in the first period. In

addition, Figure E.1 displays the probability of a constrained firm selling in the first pe-

riod (blue, dashed) and the ex ante expected profit (red, solid) for different α. The graph

shows that when the probability a constrained firm is in the market is low (first graph on

the left for α = 0.2), the odds ratio decreases quickly with p̄. When the probability of a

firm being constrained increases (the next three graphs), the odds ratio decreases at a lower

pace, and profits increase as a result of the increased market power of firms. Nevertheless,

profits decrease in p̄ with the percentage difference between the pooling equilibrium and the

equilibrium with p̄ = 1 decreasing as well from 16% to 1.6%.

Figure E.2 complements Figure 3 from the main paper by depicting the price distributions

in the first (blue, dashed) and second (red, solid) period when α and p̄ have different values.
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Figure E.1: This plot establishes the ex ante expected profit (red, solid) and the relative
likelihood of a constrained firm selling in the first period (blue, dashed) in different equilibria
(as a function of p̄). Calibrated for (from left to right) α = {0.2, 0.4, 0.6, 0.8}.

The Figure strengthens our result and shows that for different combinations of α and p̄ the

second-period price distribution is always wider, as firms mix over larger set of prices. The

price distributions intersect only once, as the second-period prices are more dispersed due

to the remaining uncertainty of the presence of a rival in the respective period.

Figure E.2: First- (blue, dashed) and second-period (red, solid) price distributions. Cali-
brated for (from left to right) {(α = 0.2, p = 0.35), (α = 0.2, p = 0.65), (α = 0.4, p = 0.65)},.
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Figure E.3: This plot shows the ex ante expected first- (blue, dashed) and second-period

(red, solid) transaction prices in different equilibria (as a function of p̄). Calibrated for (from

left to right) α = {0.2, 0.4, 0.6, 0.8}.

Finally, Figure E.3 expands Figure 5 from the main paper for different α. It shows

the expected prices in the first and second period for different semi-separating equilibria as

a function of the upper bound of the distribution p̄, for different values of α. In all semi-

separating equilibria it holds that, as long as p̄ is closer to α the second-period price is higher

than the first-period price. When p̄ becomes large and approaches 1, the probability that a

constrained firm sells in the first period decreases (as depicted by Figure E.1 above), which

results in lower posteriors and lower prices in the second period. Naturally, as α increases,

so do the prices in both periods.
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