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Consumers acquire information through their own search efforts or through word-of-mouth communica-
tion within their social network. Information diffusion leads to free-riding and less active search. Free-riding
consumers also create important positive externalities, however, as they are more likely to compare prices,
imposing competitive pressure on firms. We show how market prices depend on network characteristics and
search cost. For example, if search cost becomes small, price dispersion disappears, while prices converge to
the monopoly level, with expected prices decreasing for small search cost. Prices are lower in societies with
more connections, while price dispersion remains even in fully connected societies.

1. introduction

Decentralized markets rely on how information that is dispersed over many individuals is
diffused (Hayek, 1945). Individual agents are, however, not endowed with a natural amount
of information. Often, they have to spend resources, such as time, to search and acquire infor-
mation. Accordingly, agents will only acquire information if the expected benefit exceeds the
opportunity cost of doing so. This has led Grossman and Stiglitz (1980) to pose that efficient
markets cannot exist if arbitrage is costly. Information can, however, also be acquired in less
costly ways, namely through word-of-mouth (WOM) communication via friends (see, e.g.,
Ellison and Fudenberg, 1995, and Campbell, 2013).1 WOM communication may come with a
delay, however, as one has to wait for friends to communicate their information.

Costly information acquisition and diffusion (WOM communication) are clearly related.
When few people acquire information themselves, little information will be diffused, whereas
if information is disseminated efficiently, people may not have the incentive to spend re-
sources to acquire information themselves. Thus, it is important to understand the interaction
between the incentives to acquire information and the efficiency of the information diffu-
sion process. This is especially so for online markets and online interaction through social
networks, such as Facebook or LinkedIn. It is well documented2 that online technologies
have significantly reduced the search cost related to information acquisition and increased
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the possibilities of diffusion, and it is important to understand how these developments affect
market outcomes.

In this article, we study the interaction between information acquisition, diffusion, and
market power, and explain the impact of changes in the connectedness of people (impacting
diffusion of information through WOM) and search costs on market outcomes. Our theoreti-
cal framework considers a homogeneous goods market where firms set prices and consumers
engage in costly sequential search to acquire information about prices before buying one unit
of the good (Stigler, 1961, and Diamond, 1971).3 Consumers that have searched for prices
spread this information through their network. The environment we study allows us to con-
sider the impact of social network architecture, the speed of information transmission, and
search costs on information acquisition and market power.

We find that independent of the acquisition (search) cost, there always exists a no-trade
equilibrium that has the Diamond paradox at its origin: no one will acquire information if
firms set very high prices, while setting high prices is (weakly) optimal if no one acquires infor-
mation.4 Importantly, WOM communication resolves the Diamond paradox, in that, it creates
additional equilibria with positive sales. In all of these equilibria, searching consumers follow
a reservation price strategy and firms do not price above this reservation price. With WOM
communication, consumers determine whether or not to acquire information themselves. The
possibility to get information through their social network implies that in any equilibrium, it
cannot be the case that all consumers incur a search cost to acquire information themselves. If
it were the case, prices would be equal to the willingness to pay and consumers would not be
willing to spend a positive search cost, but instead free-ride on friends, as this also allows them
to buy, possibly at the lowest price charged in the market without incurring the search cost.
Thus, an endogenously determined fraction of consumers is informed through friends. By free-
riding on the information acquisition of friends, the waiting consumers will be informed with
positive probability about different prices, resolving the Diamond paradox.

Waiting consumers are the only ones who compare prices and they have a positive effect
on market competition and consumer surplus. From a total surplus perspective, and under
unit demand, this effect is unimportant, however, as long as there exists a positive fraction
of waiting consumers: the increase in consumer surplus is offset by a decrease in profits. In
our model, total surplus is affected by two factors: the search cost that is incurred by all con-
sumers who search themselves and the cost due to some consumers delaying their purchases.
We show that the market outcome is inefficient as there is insufficient search. In particular,
if a small fraction of consumers who were not searching start to search, then this has a posi-
tive impact on total surplus as firms from which they buy sell without delay and, in addition,
a larger fraction of consumers who delay their purchase will now be informed about prices by
their friends.

In terms of the impact of the social network structure, we show that, contrary to what one
may expect, even when the network gets very dense and many consumers have many connec-
tions, prices do not converge to the marginal cost of production and price dispersion remains.
What matters for price dispersion and market power is the relative fraction of consumers that
is informed of only one price. This fraction is endogenously determined and remains positive
even in dense networks as information from friends comes with a delay creating an incentive
to search and searching consumers buy immediately after acquiring information.

3 Undoubtedly, consumers in social networks exchange a lot of information about product characteristics, such as
quality, appearance, and/or convenience. Yet, casual evidence of reviews on platforms such as yelp or tripadvisor
suggests that people also share information about prices. For example, a review of cafe Havelka in Vienna on yelp
says “We didn’t have to wait long for service, and our orders came really quickly. 13.50 Euros for a sacher torte,
an espresso, and a Melange.” In homogeneous goods markets, price communication is the only thing that matters.
To study the impact of other types of information exchange, one would need to model differentiated goods and ho-
mophily in networks. The effect of exchanging price information in financial markets has been studied in Gray and
Kern (2011) and in Han and Yang (2013).

4 A no-trade equilibrium exists in many simultaneous and sequential search models where the first search is costly
for all consumers (see, e.g., Diamond, 1971, and Burdett and Judd, 1983)
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atayev and janssen 3

The speed of information diffusion in networks is important in that it is a key determinant
of the cost associated with waiting for information through WOM communication. We show
that a higher speed of information diffusion has two opposing effects on market competition.
First, it has a direct positive effect as more consumers do not search themselves, making price
comparisons more likely. There is also an indirect effect, however, namely that as prices and
price dispersion decline, consumers have more incentives to become active searchers them-
selves, especially when the speed of information diffusion is low to begin with. These two
effects imply that both the fraction of active consumers and firms’ profits have an inverted
U-shape with respect to the speed of information diffusion: when this speed is low to begin
with, firms have an incentive to increase it as this will also speed up their sales, but when the
speed is already relatively large, the effect on expected price dominates and firms want to
slow down information diffusion.

The impact of search cost is best illustrated by considering the case where the search cost
becomes arbitrarily small. We show that in this case price dispersion disappears and almost
all consumers become active themselves and buy immediately after they have searched them-
selves. As almost no consumer makes price comparisons, prices converge to monopoly levels.
When the search cost increases, more consumers wait to get information through WOM com-
munication so that a larger fraction of consumers make price comparisons, resulting in lower
prices. Thus, and contrary to common wisdom, prices may be decreasing in search cost when
WOM communication plays a role.

Our article provides a new argument to overcome the Diamond paradox.5 Wolinsky (1986)
resolves the Diamond paradox by having firms produce heterogeneous products and con-
sumers searching not only for price but also for a good product match. Varian (1980) and
Stahl (1989) impose search cost heterogeneity among consumers, where some exogenously
determined fraction of “shoppers” have zero search cost and compare all prices before buy-
ing. Unlike these two papers, we endow consumers with the possibility to acquire information
through WOM communication in addition to their own information acquisition by means of
search. In this way, we endogenize the fraction of price comparing consumers and resolve the
Diamond paradox.

Galeotti (2010) also combines WOM communication and consumer search. There are two
main modeling differences between his paper and ours. First, in Galeotti (2010), consumers
search for prices in a nonsequential fashion, whereas we have a sequential search framework.
In most consumer retail markets, consumers observe the price at a firm before they decide
whether to search another firm, making the sequential search paradigm more relevant. Sec-
ond, Galeotti (2010) assumes the first search is free so that all consumers know at least one
price, whereas we have truly costly search. These differences in modeling lead to pronounced
differences in our understanding of information acquisition and diffusion in markets. First, in
our setting, prices are increasing in search cost and tend to the monopoly price when search
cost tends to zero, whereas in Galeotti (2010) prices converge to their competitive levels. Se-
quential search is the main reason for this difference. Second, if people get better connected
and the network becomes dense, we show that price dispersion and market power remain,
whereas in Galeotti (2010), prices converge to marginal cost. Costly first search is responsible
for this important difference.6 Third, our result that free-riding has a positive impact on prices
is not present in Galeotti (2010) as under nonsequential search with the first search being
free, searching consumers are always better informed than waiting consumers.7 Fourth, our

5 If individual consumers have downward sloping demand (or the first search is somehow free), then the Diamond
paradox takes on a somewhat different form, namely, that all firms charge the monopoly price.

6 Janssen et al. (2005) were the first to study the impact of the first search being costly on the participation of con-
sumers in the marketplace. In their setting (and in contrast to ours), search is, however, the only source of informa-
tion acquisition.

7 Miegielsen (2014) adopts a sequential search framework but considers a model where somehow consumers pos-
sess information about prices before engaging in search and the amount of information that consumers have (and
share with each other) is given exogenously.
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4 atayev and janssen

modeling of search and communication through a network allows us to consider the impact
of the speed with which communication travels through the network. Finally, we offer a new
resolution to the Diamond paradox.

There is also a growing literature on how WOM communication affects the pricing
and advertising policy of firms in the market. Earlier papers in this literature (see, e.g.,
Biyalogorsky et al., 2001; Jun and Kim, 2008; Galeotti and Goyal, 2009; Kornish and Li, 2010;
Campbell, 2013; Chuhay, 2015; Arbatskaya and Konishi, 2016; Bloch, 2016; Fainmesser and
Galeotti, 2016) consider how a monopoly firm can introduce its product optimally through
a network assuming that consumers passively wait until they receive an advertisement from
the firm, or they are informed through their network. Instead, we allow consumers to actively
reach out and search for information and we study markets where firms compete in prices. A
more recent literature on networks concerns the strategic interaction of competitors on net-
works. Chen et al. (2018) and Fainmesser and Galeotti (2020) study how firms price discrimi-
nate between different individuals depending on whether or not an individual influences many
consumers. Campbell (2019) studies how in markets with product differentiation awareness of
the available products is communicated through a social network and how this affects firms’
prices and the efficiency of market outcomes. Campbell et al. (2020) consider how information
about product quality of an experience good flows through the network and how this affects
the quality provision by firms. None of these papers studies, however, the interaction between
the incentives of consumers to acquire their own information through search and the diffusion
of information through the social network and their impact on firms’ prices and market out-
comes.

The rest of the article is organized as follows. The next section lays out a simple model of
sequential search and information diffusion. It also discusses standard consumer search mod-
els and how our article relates to them. Section 3 proves that with WOM communication, ac-
tive markets exist and that in equilibrium there is insufficient search. Section 4 then presents
the comparative statics analysis, while Section 5 shows how the equilibrium outcome is qual-
itatively similar if consumers have different number of links. We conclude with a discussion.

2. a model and preliminary results

Throughout this article, we consider a duopoly8 market for a homogeneous good where
firms compete in prices. The unit cost of production is constant and normalized to zero. As
firms may choose mixed strategies, we denote the strategy of a firm i by Fi(p), representing
the probability that a firm charges a price not larger than p. The support of the price distribu-
tion is determined endogenously with p and p being the lower and upper bound of the sup-
port, with the possibility of some prices in the interior of the interval not being chosen. On
the demand side of the market, there is a unit mass of identical consumer networks, on which
we expatiate in the next paragraph. A consumer in each network demands a unit of the prod-
uct and has a willingness to pay equal to v > 0. If a consumer does not consume, she receives
a payoff of zero. To buy a product, consumers have to be informed about their prices. To get
this information, consumers can either search themselves or get informed via their network of
friends through WOM communication.

The model we present and analyze in this and the next section is a stylized model of
how search and WOM communication interact. The main results we derive continue to
hold in a more general model that is analyzed in a working paper version (see, Atayev and
Janssen, 2023). In our model, each network consists of the same finite number of consumers.
Consumers within a network have the same number of k ≥ 2 links9 and consumers indi-

8 With more than two firms, the characterization of the mixed strategy distribution in prices is more complicated
and in this case, it is difficult to analyze the gains of search versus the gains of free riding. Galeotti (2010) also consid-
ers duopoly markets.

9 If consumers have only one link, then there is no consumer who will be informed about both prices and the Dia-
mond paradox results. The reason is (as it will become clear through the analysis) that our model shares a feature of
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atayev and janssen 5

vidually and simultaneously decide whether to be active and search themselves or to be
passive and wait for information from friends. Active consumers can only acquire information
through their own search effort, whereas passive consumers can only buy when they get infor-
mation from their friends. Active consumers search sequentially (see, e.g., Kohn and Shavell,
1974, and Stahl, 1989): after randomly choosing the first firm and obtaining its price quote at a
search cost s, with 0 < s < v , they optimally decide whether to buy the product or continue to
search. If they search the second firm, they buy at the lowest-priced firm as long as that price
is smaller than v. Consumers who searched share all the information they have acquired with
their immediate friends.10 Consumers who decided to wait observe the information their im-
mediate friends have shared with them and buy at the lowest of the prices they are informed
of. As they have to wait for their friends to share information, their payoff is discounted by a
factor δ, 0 < δ < 1.

The timing of the game, players’ strategies, and payoffs are as follows. Firms and consumers
simultaneously choose prices and whether to actively search, respectively. Having searched
one firm, active consumers decide whether or not to search the second firm and whether or
not to buy. This all happens in period 1, i.e., an active consumer who searches both firms still
buys in period 1. The only event happening in period 2 is that consumers who decided to be
passive in the first period get information from their immediate friends and decide whether
or not to buy. A firm i’s strategy is its price pi, i = 1, 2, whereas a consumer has to decide
on whether or not to search and if to search whether to search the second firm. Thus, the
consumer strategy can be denoted by (q, σ (p)), where q ∈ [0, 1] is the search probability and
σ (p) represents the search strategy of an active consumer that specifies at which price the
consumer stops searching and buys and when to continue searching. The strategy of a wait-
ing consumer is not explicitly taken into account in this notation as it is clearly optimal for
them to buy at the lowest price they received, given this price is smaller than v. We normal-
ize total market demand to 1. The search strategy of consumers and the firms’ prices lead to a
demand, dit (pi, pj ), i �= j, i, j = 1, 2 for firm i in period t. As the number of consumers is sim-
ply a multiplication factor in a firm’s payoff expression, we simplify notation and work with
a firm’s average payoff, which is given by pi(di1(pi, pj ) + δdi2(pi, pj )), where dit (pi, pj ) is the
fraction of the total demand that is served by firm i. Active consumers who buy at price p re-
ceive a payoff of v − p − s, if they search one time and a payoff of v − p − 2s if they search
twice, whereas passive consumers get a payoff of δ(v − p) if they buy at price p. Any con-
sumer who has decided not to search buys from neither firm and obtains zero if he has no
neighbor who searched.

We use symmetric perfect Bayesian equilibria (PBE) with passive beliefs as solution con-
cept. A PBE is described by a set of prices for both firms, p1 and p2, and consumers’ strategies
(q, σ (p)) such that they are optimal given beliefs and the strategies of the others.

2.1. Relation to the Consumer Search Literature. We now present a canonical consumer
search model to be able to highlight our contribution to the search literature and show three
preliminary results. Consider the classic model of sales by Varian (1980) where there is a frac-
tion λ ∈ (0,1) of consumers that is informed about both prices and a fraction 1 − λ of unin-
formed consumers that only knows one price, and a maximum price p > 0, which for the time

the well-known Stahl (1989) model of sequential search that firms will only consider setting prices that searching con-
sumers will immediately accept. Thus, only waiting consumers are in the position to compare prices and if consumers
have only one link, they will not be informed about both prices either.

10 We use the term “immediate friends” for people in a social network a consumer has a direct connection with.
Consumers can also be indirectly linked to other consumers, namely, if they are connected only via a mutual friend.
These consumers are not referred to as “immediate friends.”

 14682354, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12672 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [02/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 atayev and janssen

being can be thought of as being exogenously given.11 Varian (1980) shows that the profit of
firm i is given by

�i(pi) =
(

1 − λ

2
+ λ(1 − Fj(pi))

)
pi,

and that the unique equilibrium is in mixed strategies where firms have to be indifferent be-
tween any price in the support of the mixed strategy distribution. He also shows that the up-
per bound of the support is equal to p. As a firm charging p only sells to half of the unin-
formed consumers, �i(pi) = (1 − λ)p/2, so that one can solve for the symmetric equilibrium
mixed strategy distribution as

F (p) = 1 − 1 − λ

2λ

p − p
p

.

Given F (p), the expected price E[p] and the expected minimum of two prices E[min{p1, p2}]
can be determined, where both depend on p and λ, with

E[p] = 1 − λ

2λ
p ln

(
1 + 2λ

1 − λ

)
,

E[min{p1, p2}] = 1 − λ

λ
p
(

1 − λ

2λ
ln

(
1 + 2λ

1 − λ

)
− 1

)
.

Stahl (1989) endogenizes p by allowing uninformed consumers (who in his model get to
know one price for free) to pay a search cost s to observe more prices. In a duopoly model,
this essentially means that these consumers get fully informed about both prices by paying
an additional s. He characterizes a so-called reservation price equilibrium (RPE), where con-
sumers buy immediately if, and only if, the price p they observe is smaller than or equal to this
reservation price r. At r consumers are indifferent between buying immediately and continu-
ing to search. As consumers’ payoffs of buying and continuing to search after observing any
price p̃ are given by v − p̃ and v − (1 − F ( p̃))p̃ − F ( p̃)E(p|p < p̃) − s, respectively, it is easy
to see that r is implicitly defined by

F (r)
∫ r

p
(r − p)dF (p) = s.(1)

Stahl (1989) shows that if there is a solution to (1), it must be unique for any nondegenerate
F (p). In addition, all equilibria have the property that p = min{r, v} so that consumers decide
to buy immediately after receiving some information, that is, F (r) = 1.12 Thus, (1) reduces to
v − r = v − E[p] − s, yielding the solution

r = s

1 − 1−λ
2λ

ln
(
1 + 2λ

1−λ

) ,

where the reservation price depends on s and λ. Thus, in the Stahl (1989) model, both E[p]
and E[min{p1, p2}] depend on the exogenous parameters s and λ (and on v if r > v).

Janssen et al. (2005) add to the Stahl (1989) model the idea that uninformed consumers
should also pay a search cost s for the first price quote. In that case, the search strategy should
also consider whether or not to search in the first place. As the consumers’ outside option in

11 In Varian (1980), p = v.
12 This is also true in our model and the intuitive argument in our context is given just above Lemma 3.
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atayev and janssen 7

traditional search models is not to buy and get a payoff of 0, this yields the additional con-
dition that v − E[p] − s ≥ 0, resulting in a fraction q(s, λ) ∈ (0, 1] of consumers becoming ac-
tive.

Relative to this consumer search literature, our article endogenizes the fraction λ of fully
informed consumers via the determination of q. Importantly, as in Janssen et al. (2005), con-
sumers’ search strategy should not only determine when to stop searching and buy, but also
whether or not to start searching in the first place. In contrast to Janssen et al. (2005) , the
“outside option” is not exogenous (and equal to 0) in our model, but equal to the payoff
of not searching, which is endogenous and depending on how other consumers are search-
ing and how information is transmitted. Consumers may not only obtain information through
their own search effort, but also by relying on friends. From an ex ante perspective, consumers
that do not search and acquire information themselves can either buy at E[p] (if they are
only informed about one price) or at E[min{p1, p2}] (if they are informed about two prices).
The fraction q will be endogenously determined by these considerations. In this regard, the
relation with Burdett and Judd (1983) is also important. They study a simultaneous search
model and show that an equilibrium exists where consumers randomize between searching
once and twice, and in that equilibrium, the indifference condition for consumers is given by
v − E[p] − s = v − E[min{p1, p2}] − 2s : some consumers are willing to incur the search cost
twice as there is a chance they buy at a lower price. Consumers who observe both prices are
crucial in generating price dispersion in Burdett and Judd (1983). In our article, it is the pas-
sive consumers that are crucial in generating price dispersion: they incur a cost due to the de-
lay with which they observe prices, but they save on search costs and may also buy at the low-
est price.

2.2. Preliminary Results. Having described how our model fits into the consumer search
literature, we now present some preliminary results for our model that are familiar to the
search literature. A first result is that there always exists a trivial “no trade” equilibrium with
q = 0.

Lemma 1. For any s > 0, there exists an equilibrium without sales where q = 0.

As the first search is costly, this result should not come as a surprise: knowing they will not
sell to anyone, firms may set prices larger than v − s and this pricing behavior rationalizes con-
sumers’ beliefs that it is not rational to search. If no one searches, no information is shared
and consumers cannot buy.

A second preliminary result is that there does not exist an equilibrium with q = 1. The rea-
son is similar to the Diamond paradox (Diamond, 1971): if everyone searches themselves,
they all buy immediately without comparing prices. If no one is informed about both prices,
we have the equivalent of λ being equal to 0 in the Varian (1980) model described above, and
the price distribution becomes degenerate. But this would imply that firms have an incentive
to price at v and consumers do not have an incentive to search themselves.

Lemma 2. For any s > 0, there does not exist an equilibrium where q = 1.

Thus, in any active market with positive sales, it must be that 0 < q < 1.
Our final preliminary result is that p cannot be larger than r (as in Stahl, 1989). To under-

stand why, note first that p cannot have a mass point as (with 0 < q < 1) there will be a pos-
itive fraction of passive consumers who compare prices, making it optimal to undercut. Sec-
ond, active searchers have the same options as in Stahl (1989) so that (1) also characterizes
their optimal stopping rule. As a consequence, active consumers do not buy at a price p if it is
larger than r. Therefore, and third, waiting consumers will either not be informed of any price
at all or if p > r, they will always be informed of a price lower than p as searching consumers
will always continue to search and find a lower price if they observe p > r. Thus, a firm will
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8 atayev and janssen

not sell to any consumer if it charges p > r. As it is clear that in addition no firm would set a
price larger than v, we have the following result:

Lemma 3. Any equilibrium where goods are bought has F (min{r, v}) = 1.

3. analysis

We now construct an equilibrium where some consumers buy. Note first that in any such
equilibrium we should have that r < v. This follows from the following three facts: (i) mar-
kets can only be active if consumers are indifferent, that is, 0 < q < 1; (ii) the expected pay-
off of waiting is strictly positive implying that the expected payoff of searching must be posi-
tive, that is, v − E[p] − s > 0; and (iii) the reservation price is determined by r = E[p] + s (as
F (r) = 1).

The expected payoff of waiting consumers equals:

δ
(
1 − (1 − q)k)v − 2δ

[(
1 − q

2

)k
− (1 − q)k

]
E[p] − δ

[
1 + (1 − q)k − 2

(
1 − q

2

)k
]

E[min{p1, p2}]

= δ
(
1 − (1 − q)k)(v − E[p]) + δ

[
1 + (1 − q)k − 2

(
1 − q

2

)k
]

(E[p] − E[min{p1, p2}]).

This expression can be understood as follows. There is a probability (1 − q)k that none of
a consumer’s friends is active. With the remaining probability of 1 − (1 − q)k, they buy and
receive the value v of consuming the product. From an ex ante perspective, they either pay
the expected price E[p] or the expected minimum price E[min{p1, p2}]. The probability that
all of a consumer’s friends receive the price of one particular firm, say firm 1, is given by
(1 − q/2)k − (1 − q)k, where the first term is the probability that none of the friends observes
the price of the other firm (firm 2). Thus, the probability that all of a consumer’s friends ob-
serve one and the same price that is set by either firm 1 or firm 2 is given by 2[(1 − q/2)k −
(1 − q)k]. The probability that a consumer’s friends receive information about both prices is
then given by the complement of not getting any price or all getting the same price, that
is, 1 − (1 − q)k − 2[(1 − q/2)k − (1 − q)k], which reduces to the above expression involving
E[min{p1, p2}].

The probability q that a consumer is active is such that the consumer is indifferent between
being active and passive and, therefore, in equilibrium we should have:

v − E[p] − s = δ
(
1 − (1 − q)k)(v − E[p])

+ δ

(
1 + (1 − q)k − 2

(
1 − q

2

)k
)

(E[p] − E[min{p1, p2}]),
(2)

which can be rewritten as

s
v

= (
1 − δ + δ(1 − q)k)v − E[p]

v
− δ

(
1 + (1 − q)k − 2

(
1 − q

2

)k
)

E[p] − E[min{p1, p2}]
v

,(3)

where the left-hand side (LHS) and right-hand side (RHS), respectively, represent the relative
cost and the relative benefit of being active.

We now turn to the determination of the equilibrium pricing strategy of the firms. As in
canonical models of consumer search, an individual firm faces a trade-off between extracting
surplus from consumers who observe only its price and competing for price-comparing con-
sumers. If we let μ1 denote the fraction of consumers waiting and seeing only this firm’s price
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atayev and janssen 9

and μ2 the fraction of consumers waiting and seeing both prices, an individual firm’s expected
profit setting price p ≤ min{r, v} is given by

�(p) =
(q

2
+ δμ1 + δμ2(1 − F (p))

)
p.

Clearly, in the first period, a firm only sells to consumers that search themselves and randomly
choose the firm in question, which happens with probability q/2. In the second period, a firm
only sells to consumers that have not searched themselves. Some of these consumers only re-
ceive the price of this particular firm and buy from that firm without comparing prices. As
explained above, this happens with probability (1 − q/2)k − (1 − q)k. Thus, the probability a
consumer buys in period 2 without comparing prices is given by μ1 = (1 − q)[(1 − q/2)k −
(1 − q)k]. Other waiting consumers observe the price of both firms, and from the above con-
siderations it follows that the probability a consumer buys in period 2 while comparing prices
is given by μ2 = (1 − q)[1 + (1 − q)k − 2(1 − q/2)k]. A firm will only sell to these consumers
if it has the lowest price, which happens with probability (1 − F (p)). Note that both μ1 and μ2

are continuous in q and for any 0 < q < 1, it must be that μ1, μ2 > 0 and μ1 + μ2 < 1.
Equating these expected profits with the profit of setting a price equal to the upper bound

of the distribution gives the equilibrium price distribution as

F (p) = 1 + η − η
p
p
, with support [p, p],(4)

where η = (q/2 + δμ1)/(δμ2) and p = pη/(1 + η) solves F (p) = 0 , whereas p = min{r, v}.
The fraction η is the ratio of consumers who do not compare prices to those that do compare
prices (as in the traditional models of Varian, 1980, and Stahl, 1989). Here, the fraction of con-
sumers who are informed about only one price consists of the fraction of active consumers
and those passive consumers who receive only one price quotation from friends, whereas the
fraction of consumers who are informed about both prices consists of only passive consumers
who receive information about the offerings of both firms through their social network.

It is easy to see that for any 0 < q < 1, η > 0, so that F (p) is well defined. It is clear that
as q approaches 0 or 1, η becomes infinitely large13 and price dispersion disappears. Also, as
η is finite for any intermediate value of q, it is clear that the relation between η and q is non-
monotonic. When q increases, there are two effects that create this nonmonotonicity: the di-
rect effect is that a larger fraction of consumers is active and, in equilibrium, they buy immedi-
ately after observing their first price offer, while the indirect effect is that the relative fraction
of passive consumers that are informed about multiple prices changes.

Having explained the different conditions that should hold in an RPE with positive sales,
we are now able to provide the main result of this section.

Theorem 1. There exists an s ≤ v such that an RPE exists if and only if s ≤ s. If an RPE ex-
ists it is determined by the probability q∗ that solves (2) and by r and F (p) as given by (1) and
(4), with 0 < q∗ < 1. Furthermore, as lims→0 q∗ = 1 and price dispersion disappears, that is,

lim
s→0

p = lim
s→0

p = v.(5)

13 Although the latter limited result is straightforward, the former is not. Yet, one can show that

lim
q↓0

q
2δ

+ (1 − q)
((

1 − q
2

)k − (1 − q)k
)

(1 − q)
(

1 + (1 − q)k − 2
(
1 − q

2

)k
) = lim

q↓0

1
2δ

− (
1 − q

2

)k + (1 − q)k − k(1 − q)
(

(1− q
2 )k−1

2 − (1 − q)k−1
)

k(1 − q)
((

1 − q
2

)k−1 − (1 − q)k−1
)

− 1 − (1 − q)k + 2
(
1 − q

2

)k

= ∞,

where we applied l’Hopital’s rule to obtain the first equality. The second equality follows from the facts that the nu-
merator converges to (1 + δk)/2, whereas the denominator goes to 0.
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10 atayev and janssen

Figure 1

illustration of existence of an rpe for v = 1, s = 0.05, k = 5, δ = 0.9

The equilibrium endogeneously determines q∗ ∈ (0, 1). It follows that even though ex ante
all consumers are identical, in equilibrium the population is endogeneously split into two
parts. One part of the population is active and acquires information themselves through costly
search, whereas the other part is passive and only relies on information diffused by friends. As
active consumers buy at the first price they discover, while with positive probability passive
consumers buy at the lowest of both prices, price dispersion endogeneously arises in equilib-
rium. The limiting result can be explained by delving deeper into the consumer indifference
equation (2). Note that if s = 0, then there is no reason for a consumer to be passive and we
have that q = 1. Moreover, we have that E[p] = E[min{p1, p2}] as price dispersion disappears
as active consumers will continue to search if there is a possibility to obtain a lower price.
Thus, as the RHS of (2) converges to 0, the LHS should also converge to 0, implying that
E[p] = v.14

Figure 1 provides an illustration of the theorem. The horizontal axis represents the fraction
q of searching consumers, while the cost and the expected benefits of search are presented on
the vertical axis. The solid curve represents the expected benefits, whereas the dashed hori-
zontal line represents the cost of search. In terms of Equation (3), the solid curve represents
the RHS of the equation and the dashed line represents the LHS. In the proof, we show what
the figure presents, namely, that when q approaches 0 or 1, the expected benefit of search ap-
proaches 0. This is quite intuitive: if q approaches 0 or 1, there are very few consumers who
compare prices either because there are almost no nonsearching consumers (q close to 1) or
because there is almost no information that is diffused in the system (q close to 0). Thus, firms
exercise their market power, prices get close to v, and individually consumers have no incen-
tive to search. As for interior values of q the expected benefits are positive and continuous in
q, it must be the case that for small enough values of s an equilibrium exists.

The figure shows that for small enough values of s there are two intersection points and,
hence, two equilibrium values of q∗ where the market is active. One may argue, however,
as in other search models (see, e.g. Burdett and Judd, 1983, Fershtman and Fishman, 1992,
Janssen and Moraga-Gonzalez, 2004 and Honda, 2015) that the equilibrium corresponding to
the higher search probability can be called a “stable” equilibrium in the sense that if q falls

14 Note that for δ = 1, the limiting result may be different as in this case the LHS of (2) is always equal to 0. This is
the main reason why we included a cost of waiting into the simple model of this section.
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atayev and janssen 11

(slightly) short of the equilibrium value the expected benefit of search exceeds the cost so that
consumers have an incentive to search more intensively. The comparative static analysis fo-
cuses on this “stable” equilibrium.

We finally consider the welfare properties of the equilibrium. There are generally three
causes for a welfare loss in our model: the search cost that is incurred by everybody who
searches, the cost due to some consumers delaying their purchases, and a “loss” owing to
some consumers waiting, not being informed about prices, and dropping out of the market al-
together. We show that the market outcome is inefficient: either the market is inactive which,
as s < v, is clearly inefficient, or (if the search cost is small enough) the market generates pos-
itive sales, but also in that case, there is too little search from a social welfare perspective. To
see the latter, consider that consumers search optimally from a social perspective and denote
by q̃ the socially optimal search probability. In a social optimum the marginal benefit of an in-
dividual searching has to be equal to the (social) cost of searching, which is s:

δ(1 − q̃)kv + (1 − δ)v + δk(1 − q̃)kv = s.(6)

The first term on the LHS reflects the fact that if a consumer waits he may not have received
information from friends, which happens with probability (1 − q̃)k, and he drops out of the
market. The advantage of searching is that a consumer buys for sure. The second term re-
flects that if an individual is active instead of passive, he does not wait to buy. Finally, the third
term on the LHS reflects the fact that by searching an individual’s neighbors may now buy in-
stead of not buying. This happens if a neighbor himself did not search, which happens with
(1 − q̃), and did not get information from all of his other neighbors, which happens with prob-
ability (1 − q̃)k−1. As this applies to all the k neighbors an individual has, this additional bene-
fit arises with probability k(1 − q̃)k.

To understand whether there is inefficient search, we have to compare this to the individ-
ual incentives to search as given in (2), and to do so, it is convenient to rewrite the LHS of
(6) as ((1 − δ) + δ(1 − q̃)k)v + δk(1 − q̃)kv. The first term in both equations differs to the ex-
tent that an individual consumer is only interested in his own improvement in surplus when
searching, represented by v − E[p], whereas social surplus increases by v as firms also ben-
efit from the consumer searching. The second term of the social benefit of additional search
does not have a counterpart in (2). This second term reflects the fact that waiting consumers
have a higher probability of receiving any information and buying the good, which is a posi-
tive externality that individual consumers do not take into account when they make their in-
dividual search decision. Finally, the second term on the RHS of (2) reflects the fact that indi-
vidual consumers may benefit by waiting as they can buy at the lowest of two prices if they are
informed of both of them. This term is absent from (6), however, as firms’ profits are to the
same extent negatively affected. 15

All these three differences point in the same direction: there are social benefits to search
that are not taken into account by an individual consumer deciding on whether or not to ac-
tively search. Moreover, there is an individual benefit of waiting that does not exist at the so-
cial level. Thus, we have the following proposition:

Proposition 1. In any RPE, the equilibrium level of search is smaller than the social opti-
mum level, that is, q∗ < q̃.

4. comparative statics

Using the equilibrium characterization, we now analyze how market outcomes depend on
exogenous parameters. We will first focus on the impact of network structure on equilibrium

15 Thus, even though the consumers that do not search provide a positive externality to other consumers, in that, by
comparing prices they put competitive pressure on firms, this effect does not play a role in the overall welfare analysis
in terms of total surplus as long as markets are active.
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12 atayev and janssen

prices, before concentrating on the speed of communication in the network and the cost of
searching. A social network like Facebook has significantly increased the number of connec-
tions people have (although there remain a nonnegligible fraction of consumers who do not
use Facebook or other social networks) and the speed of information diffusion through the
network. Online markets have also significantly reduced search cost s. In this section, we dis-
cuss the implications of these changes on market outcomes. Unless explicitly discussed oth-
erwise, the changes in firms’ profits is perfectly in line with expected price. In an RPE, the
expected market price is proportional to s and given by E[p] = sη ln(1 + 1/η)/(1 − η ln(1 +
1/η)), which is increasing in η.

4.1. The Impact of Denser Networks. We first investigate the limiting behavior when all
consumers tend to have many links. One may think that if all consumers potentially get in-
formation from many friends, competition would prevail and prices converge to marginal cost
with price dispersion being eliminated. Surprisingly, however, as the next result shows, price
dispersion remains an essential feature of any RPE, and even in the limit when all consumers
have infinitely many links, price dispersion remains and prices are bounded away from 0.

Proposition 2. For any k, any RPE with positive sales is characterized by price dispersion,
that is, p < p. Moreover, limk→∞ p < limk→∞ p. Finally, for any s < (1 − δ)v, there exists a k̂(s)
such that for k > k̂(s), an RPE with positive sales exists.

The reason that price dispersion remains if the network gets denser is as follows. For any
given 0 < q < 1, almost all consumers who wait get informed about both prices as k gets very
large. Thus, μ1 ≈ 0, while μ2 ≈ 1 − q, so that that η ≈ q/(2δ(1 − q)). This expression is easily
interpreted: if k is very large, only searching consumers observe one price and of them only
half visits a given firm, whereas all the waiting consumers observe both prices. Like in the
models of Varian (1980) and Stahl (1989), this ratio determines the way prices are dispersed.
The factor δ appears as the profit a firm gets over waiting consumers is discounted. For any
given 0 < q < 1, η is finite and if s is small enough, there is a benefit to search. A consequence
of price dispersion is that prices do not converge to marginal cost. The proof that an RPE with
positive sales exist for small enough values of s essentially shows that if k → ∞, the benefit of
search continues to have a shape similar to the one depicted in Figure 1.

It is important to understand that for this result to hold the first search should be costly. If
this were not the case, the Diamond paradox applies with p∗ = v as all consumers would ob-
tain one price quote and as this price is smaller than r, they would buy immediately, with no
consumer waiting to get information from friends.16 This also explains why in Galeotti (2010)
prices do converge to marginal cost if the network of consumers gets dense: it is the conse-
quence of the first search being assumed to be free in his model. Similarly, if there are other
ways to introduce price information into the network without some consumer having to in-
cur a cost for it (e.g., by firms truthfully advertising prices), then prices would converge to
marginal cost as this information gets diffused through the network.

It is difficult to analytically analyze the effect of increasing k when k is finite. Using numer-
ical simulations, Figures 2 and 3 show the impact by gradually increasing k from 2 to 25 for
v = 1, s = 0.05, and δ = 0.93. Figure 3 depicts the impact of network density on the expected
price. It shows that the expected price is decreasing in k and that certainly when k is small,
this impact is relatively strong. The main, direct impact can be understood by noting that for
given fraction q of consumers that search the term μ1, which is proportional to (1 − q/2)k −
(1 − q)k, is decreasing in k, whereas μ2, which is proportional to (1 + (1 − q)k − 2(1 − q/2)k),
is increasing in k. It follows that for given q, η is decreasing in k.

16 Note that even if δ = 1, price dispersion remains in the limit when k → ∞. In this case, q → 0 in such a way that
(1 − q)k remains strictly positive.
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atayev and janssen 13

Figure 2

impact of k on the share of active consumers

Figure 3

impact of k on expected price

There is, however, also an indirect effect through the fraction q of consumers that searches.
The effect of k on q is depicted in Figure 2 and the effect is nonmonotonic. Two opposing
forces contribute to this nonmonotonic effect. First, as k increases, waiting consumers are
more likely to get information from friends and make price comparisons, making it more at-
tractive to wait. Second, the opposite effect is that as k increases, the level of price disper-
sion falls so that the main benefit of waiting (which is to be able to buy at the lowest of two
prices) becomes less important, making waiting less attractive. For small k, the latter effect
dominates, whereas for large k the first effect dominates. The indirect effect of k through q is,
however, not as strong as the direct effect and thus, the overall impact on expected price is de-
creasing.

Note that the rise in the fraction of consumers actively acquiring information as the net-
work becomes denser is strikingly different from Galeotti (2010) and Galeotti and Goyal
(2010) where an agent’s probability of actively acquiring information negatively correlates
with the number of links they have. The combined price effect through a lower expected price
and lower price dispersion as measured by E[p] − E[min{p1, p2}] is at the heart of this.
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14 atayev and janssen

Figure 4

impact of δ on the share of active consumers

4.2. The Speed of Information Diffusion. Social media have significantly increased the
speed with which consumers may share information. In our model, speed is only relevant in
terms of the delay with which passive consumers buy and this is measured by δ. A higher δ,
resulting in faster information transmission, permits waiting consumers to access information
provided by friends more quickly. The effect on market outcomes are more subtle, however,
as δ affects the incentives to search by making it less costly to wait. Thus, the net effect on
market outcomes is not clear. As with the comparative statics with respect to the density of
the network, there is a direct and an indirect effect of δ on prices. The direct effect can be
seen by taking the partial derivative of η with respect to δ. As this derivative is negative, an
increase in the speed of information processing in the population increases the share of price
comparing consumers, putting downward pressure on prices. This should not come as a sur-
prise: the larger δ, the more attractive it is to wait for information from friends. There is also
an indirect effect via q, however. For small values of δ, the indirect effect is very similar to the
indirect effect we mentioned in relation to the impact of k, namely that as prices and price dis-
persion decline, consumers have more incentives to become active searchers themselves. As
δ becomes large, there is almost no downside to waiting anymore and consumers massively
change their behavior and do not search.

Numerical simulations in Figures 4 and 5 show the effect of an increase in δ on the share of
searching consumers and the expected price when we change the value of δ (here from 0.2 to
0.95) and keep the other parameter values at v = 1, s = 0.05, and k = 5. Figure 5 shows that
even though the indirect effect is nonmonotonic, the direct effect dominates and that the total
effect of δ on the expected price is negative.

Interestingly, the speed of information diffusion also has a nonmonotonic effect on firms’
profits as shown in Figure 6. When the speed of information diffusion is relatively low, firms
prefer a large share of searching consumers as these consumers buy immediately, whereas the
sales to waiting consumers are heavily discounted. Thus, even though expected price is mono-
tonically decreasing in the speed of information diffusion, the fact that the fraction of search-
ing consumers is increasing offsets the decrease in revenue per consumer. On the other hand,
when the speed of information diffusion is already relatively high to begin with, firms would
not want to increase it further. In the Online Appendix, we show that the effect for large val-
ues of δ remains true if firms do not discount future profits, or if we reformulate firms’ profits
as (pidi1(pi, pj ) + δpidi2(pi, pj ))/(1 + δ). The strong negative impact of δ on expected price is
responsible for this. However, the inverted U-shape feature of profits becomes either less pro-
nounced or disappears and the negative impact of δ on profits dominates.
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atayev and janssen 15

Figure 5

impact of δ on expected price

Figure 6

impact of δ on firm profit

4.3. The Effects of Changes in Search Cost. Finally, we study the impact of a change in s.
We already know that the optimal search probability goes to 1 in the limit when s goes to zero,
suggesting that as s starts increasing from 0, the optimal search probability decreases. The next
proposition shows that the underlying effects also hold true outside the region where s is close
to 0. The reason is simple: in any stable equilibrium the benefit of search is decreasing in the
share of active consumers (cf., Figure 1). Thus, if the search cost s is increasing, to satisfy the
consumer indifference Equation (2), the equilibrium share of active consumers is decreasing.

Proposition 3. In any stable RPE, the equilibrium share of active consumers q∗ is decreasing
in s.

The effect of s on the expected equilibrium price is more subtle, however. We know from
Theorem 1 that in the limit when s is arbitrarily small, prices converge to the monopoly price
v: when s is arbitrarily small, almost all consumers are actively searching themselves and
very few consumers make price comparisons. This immediately implies that for small enough
search cost, the expected price must be decreasing in s : as more consumers make price com-
parisons when s increases, there will be more competition between firms. We know, however,
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16 atayev and janssen

Figure 7

impact of s on expected price

that the relation between η and q is nonmonotonic and that expected price is increasing in η.
Thus, for small enough s, expected price is decreasing in s, but this is not necessarily so for
larger values of s. Figure 7 illustrates, however, that the expected price may well be decreasing
in s for a large range of s values.17

5. heterogeneity in consumer links

In many markets, consumers differ in the number of connections they have. In this sec-
tion, we show that our analyses in the previous sections extend to such markets. Although
Atayev and Janssen (2023) contains a general analysis of random social networks, we restrict
ourselves in this section to a simple, yet sharp way to model heterogeneity in consumer links,
namely, to consider a so-called star network. A star network consists of k + 1 consumers with
k ≥ 2, where one consumer, called the core, is connected to every other consumer, and all
consumers in the periphery are only linked to the core. Hence, the core has k links and each
member of the periphery has a single link. Let qc and qp be the respective search probabilities
of the core and a periphery consumer. Star networks are frequently studied (see, e.g., Gale-
otti and Goyal, 2010) and observed in laboratory experiments (see, e.g., Goyal et al., 2016, and
van Leeuwen et al., 2020).

As before, we focus on symmetric equilibria where consumers with the same number of
links search with the same probability. In the current setting, consumers with a different num-
ber of links may search with different probabilities, however. Still, some of the equilibrium
properties of active markets that we have discussed before remain valid. First, and similar
to Lemma 2, we cannot have that qc = 1 as the core is the only consumer who can compare
prices and so with qc = 1, there will be no price-comparing consumers, firms will set price
equal to v, and no consumer will have an incentive to search, an inconsistency. A similar in-
consistency arises if periphery consumers do not search for sure. Thus, it must be that qc < 1
and qp > 0. Second, from qc < 1 and qp > 0, it follows that the core is informed about both
prices with a positive probability, implying there cannot be mass points in the symmetric price
distribution: price dispersion is part of any equilibrium. Third, and similar to Lemma 3, it must
be that F (r) = 1 as firms that charge prices above r will not sell to any consumer. Thus, we
have the following lemma.

Lemma 4. Any equilibrium with positive sales must be an RPE with F (r) = 1, qc < 1, and
qp > 0 and exhibits price dispersion.

17 We used the following parameter values for the figure: v = 1, δ = 0.9, and k = 5.
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atayev and janssen 17

An individual firm’s expected profit of setting a price equal to p ≤ min{r, v} can then be
written as

�(p) = (μ0 + δμ1 + δμ2(1 − F (p)))p,

where μ0 = (qc + kqp)/(2(k + 1)) is the share of consumers who search and buy from the
firm under consideration. This share consists of two parts. A random consumer is a core one
out of k + 1 times. She searches with probability qc and visits the firm under consideration
half of the time. In k out of k + 1 times, a random consumer is a member of the periphery and
visits the firm and buys immediately with probability qp/2 .

The second part of the expected demand consists of consumers who wait and observe only
the price of a firm under consideration:

μ1 =
(1 − qc)

((
1 − qp

2

)k − (1 − qp)k
)

+ qc
2 k(1 − qp)

(k + 1)
.

The numerator of this expression consists of two terms: one representing the core and the
other, consumers at the periphery. The core waits with probability 1 − qc. She gets informed
about the price of the firm only if all searching peripheries visit this firm, which happens
with probability (1 − qp/2)k − (1 − qp)k. A periphery waits with probability 1 − qp and is in-
formed about the firm’s price if the core searches the firm under question, which happens with
probability qc/2.

The final part of the demand consists of price-comparing consumers:

μ2 =
(1 − qc)

(
1 + (1 − qp)k − 2

(
1 − qp

2

)k
)

k + 1
.

Since only the core has multiple links, she is the only consumer who may compare prices. This
happens if she waits and is informed by members of the periphery about both prices. The
former event happens with probability 1 − qc and the latter with probability 1 + (1 − qp)k −
2(1 − qp/2)k. As price-comparing consumers make a purchase from the firm under considera-
tion if its price is lower than the rival firm’s price, they buy with probability 1 − F (p).

As before, this profit must be equal to the profit that the highest price in the support of the
price distribution yields. Thus, the equilibrium price distribution is given by (4), where now we
have

η = μ0 + δμ1

δμ2
.

We next argue that for s close enough to 0, the stable RPE has to be such that η is pos-
itive and finite. To see this note that, as the reservation price r continues to be defined by
(1), it follows that lims→0 r = E[p]. Given that there are no mass points, it also follows that
lims→0 E[p] = E[min{p1, p2}]. Thus, in the limit when s goes to 0, price dispersion disappears,
which happens if, and only if, η → ∞ (which is equivalent to μ2 approaching 0). Given the ex-
pression for μ2 this implies that either lims→0 qc = 1 or lims→0 qp = 0. As, for the same rea-
sons as in Section 3, the second possibility yields an unstable RPE, we focus on equilibria with
lims→0 qc = 1.

In the proof of the next proposition in the Appendix we show that in active markets the
probabilities qc and qp cannot be the same. If they were the same, it would be the case that the
payoff of waiting would be higher for the core than for the periphery (as the core has more
links to benefit from), while the payoff of searching is identical across consumers. Following
this reasoning that when facing identical situation the core may have more incentive to wait,
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18 atayev and janssen

we focus on the case where the core searches with a lower probability than the periphery, i.e.,
qc < qp. We prove that for small enough s, qp = 1 if qc ∈ (0, 1), that this equilibrium exists
and is determined by

⎧⎨
⎩v − E[p] − s = δ

(
v − E[p] +

(
1 − 1

2k−1

)
(E[p] − E[min{p1, p2}])

)
,

v − E[p] − s > δqc(v − E[p]).
(7)

We are now ready to state the main result of this section.

Proposition 4. Consider a star network with k ≥ 2. For any v > 0, δ ∈ (0, 1), and sufficiently
small search cost s, there exists an RPE that is given by (qc, qp, r, F (p)), which is determined by
(1), (4), and (7). Furthermore, as s → 0, price dispersion necessarily disappears with p = p = v.

The proof is in the Appendix, but from the above exposition it is clear that the reasoning
is very similar to that in Theorem 1. The equilibrium satisfying (7) exists as long as the core
is indifferent between searching and waiting, while periphery consumers search with probabil-
ity one.

In addition to this equilibrium, we show in the Appendix that there may be an equilibrium
where the core searches with a higher probability than periphery consumers, that is, qc < qp.
It is difficult to provide (sufficient) conditions on exogenous parameters, which would give rise
to this equilibrium. Nonetheless we show that, if it exists, the equilibrium is determined by,
along with (1) and (4),⎧⎪⎪⎨

⎪⎪⎩
v − E[p] − s = δ

(
1 − (1 − qp)k

)
(v − E[p])

+δ
(

1 + (1 − qp)k − 2
(
1 − qp

2

)k
)

(E[p] − E[min{p1, p2}]),
v − E[p] − s = δqc(v − E[p]).

(8)

We also demonstrate that this possible equilibrium must be characterized by the price disper-
sion and as the search cost vanishes, the price level converges to the monopoly level.

6. conclusion

In this article, we have analyzed how WOM communication through social networks af-
fects information acquisition and diffusion by consumers and how this impacts on the mar-
ket power of firms. Without WOM communication, our model is prone to the Diamond para-
dox where the market breaks down due to the fact that no consumer makes price compar-
isons. WOM communication overcomes the Diamond paradox. Consumers that do not ac-
tively search themselves and free-ride on their friends in the social network may well be in-
formed about different prices. The price comparisons they make provide positive externalities
to the rest of the consumer population that actively searches as firms compete to be able to
also sell to them.

As some consumers do compare prices, while others do not, the market is characterized by
price dispersion. The level of prices and the nature of price dispersion depends on the net-
work architecture, the search cost, and how quickly information is diffused in the social net-
work. In the context of evaluating the impact of online markets and social networks, it is im-
portant to know how expected price, price dispersion and firms’ profits react to (i) a decrease
in search cost, (ii) an increase in the connectivity of the social network and (iii) an increase in
the speed of information diffusion in the network. We find that there are opposing effects as
the increased connectivity and speed of information diffusion lower expected market prices,
whereas the decrease in search cost increases them. Importantly, price dispersion does not dis-
appear even if all consumers are very well connected.
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atayev and janssen 19

We see our article as making a first step in analyzing how WOM communication and se-
quential search interact with each other. There are obvious ways our work can be extended in
different directions. One direction that may be taken is to analyze markets with product dif-
ferentiation à la Wolinsky (1986). In this case, consumers may not only communicate about
prices, but also about the product match. In such markets, the degree of homophily (defined
as the closeness of a consumer’s preferences to those of his neighbors) will be important. An-
other direction for future research would be to model the incentives to share information di-
rectly. In some markets, consumers receive a financial benefit from firms for a successful refer-
ral and an important question is how consumers will react to such incentives and when such a
financial incentive is optimal from a firm’s perspective and to whom to give it.

appendix: proofs

Proof of Lemma 1. Consider a candidate equilibrium where firms set price v and con-
sumers do not search. We show that players do not have a profitable deviation. Consider first
an individual firm. Its equilibrium payoff equals zero. If the firm deviates to another price, its
payoff remains zero as consumers do not search so no consumer is informed about the devi-
ation price. Now consider an individual consumer. Her equilibrium payoff is also zero. If she
deviates to searching, she gets a negative payoff of −s as the surplus from buying is zero. Thus,
no one has an incentive to deviate.

Proof of Lemma 2. By contradiction, suppose there exists an equilibrium with q = 1.
Then, the equilibrium price must be equal to v. First, we show that there cannot exist an equi-
librium in mixed-strategy pricing. Assume it exists for contradiction. Two cases are possible:
all prices are above r or some prices are lower than r. In the former case, all prices higher
than r will be compared to another price, which means that only r must be charged in equi-
librium, a contradiction. In the latter case, a contradiction arises because a firm has no incen-
tive to charge a price equal to the lowest price in the support, as a firm setting this price can
raise the price slightly without affecting its demand. Second, we show that there cannot be an
equilibrium in pure strategies with pi ≤ pj ≤ v, i �= j, where at least one of the inequalities is
strict. If pi < pj ≤ v, firm i has an incentive to raise its price as any consumer that observes
this increased price will still buy from that firm. If pi = pj < v, consumers do not search be-
yond the first firm and consumers would continue to buy from firm i if it raises its prices to
min{pi + s, v}, giving firm i again an incentive to raise its price. However, if firms set prices
equal to v, then each consumer has an incentive to deviate and not search. Given that the
firms’ prices are equal to v, a consumer’s payoff of searching equals −s, whereas if she devi-
ates to not searching, her payoff is zero. Hence, q = 1 cannot be part of an equilibrium.

Proof of Lemma 3. We show that for 0 < q < 1, it cannot be that F (r) < 1. Suppose, by
contradiction, that it was, which implies that p > r. Clearly, it has to be the case that in an
equilibrium with sales, we have p ≤ v as otherwise a firm charging p does not make any sales,
while it would always get some consumers visiting the firm and buying if it sets a price equal
to s. So, consider v ≥ p > r. First note that there cannot be an atom at p. This is because con-
sumers that observe this price would continue to search a rival firm (as p > r) so that firms
would increase their profit by undercutting this price as it leads to a discontinuous increase in
a firm’s demand (as a strictly positive share of consumers would compare prices). However, if
there is no atom at p, a firm charging this price does not make any sales as consumers observ-
ing this price would continue to search and with probability one observe a lower price. In ad-
dition, all waiting consumers will not be informed about p as all consumers who observed this
price also observe another price. Thus, it cannot be that p > r and therefore it should be that
F (r) = 1.
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20 atayev and janssen

Proof of Theorem 1. We start by noting the following facts. First, E[p] = p − ∫ p
p F (p)dp =

ηp ln(1 + 1/η) and E[min{p1, p2}] = p − 2
∫ p

p F (p)dp + ∫ p
p F 2(p)dp. Second,

E[p] − E[min {p1, p2}] =
∫ p

p
F (p)dp −

∫ p

p
F 2(p)dp

= ηp
(

(1 + 2η) ln
(

1 + 1
η

)
− 2

)
.

Finally, if r ≤ v, we have that p = min{r, v} = r = s/(1 − η ln(1 + 1/η)).
As long as r ≤ v, these facts allow us to rewrite (2) as

s
v

= 1 − δ
(
1 − (1 − q)k

)
1 + η

1−η ln (1+ 1
η )

[
(1 − δ + δ(1 − q)k) ln

(
1 + 1

η

)
+ δμ2

1−q

(
(1 + 2η) ln

(
1 + 1

η

)
− 2

)] .(A.1)

The RHS of (A.1) is clearly continuous in 0 < q < 1. It is also positive for all 0 < q < 1.
To see this, note that as η ln(1 + 1/η) < 1, the denominator is clearly positive if ln(1 + 1/η) >

2/(1 + 2η). As for η ↓ 0, this latter inequality clearly holds, while the LHS and the RHS both
approach 0 as η → ∞, this inequality holds for all η if the derivative of the LHS is more nega-
tive than that of the RHS. The derivative of the LHS is −1/(η(1 + η)), whereas the derivative
of the RHS is −2/((1 + 2η)2). It is easy to see that the former derivative is smaller than the
latter. Thus, as the numerator is also positive, the RHS is always positive.

We next show that there exist values of 0 < q < 1 that solve (A.1) for small enough search
costs. Given the above, it suffices to show that the RHS of (A.1) approaches 0 as q → 1, which
is associated with η → ∞. In the limit, its numerator converges to (1 − δ) and its the denom-
inator goes to ∞. In order to establish the latter result, it is helpful to use the following three
facts:

lim
η→∞ η ln

(
1 + 1

η

)
= 1,

lim
q↑1

δμ2

1 − q
= lim

q↑1
δ

(
1 + (1 − q)k − 2

(
1 − q

2

)k
)

= δ

(
1 − 1

2k−1

)
,

lim
η→∞

η
(

(1 + 2η) ln
(

1+η

η

)
− 2

)
1 − η ln

(
1+η

η

) = lim
z↓0

1
z

((
1 + 2

z

)
ln(1 + z) − 2

)
1 − ln(1+z)

z

= lim
z↓0

(2 + z) ln(1 + z) − 2z
z2 − z ln(1 + z)

= lim
z↓0

ln(1 + z) + 2+z
1+z − 2

2z − ln(1 + z) − z
1+z

= lim
z↓0

(1 + z) ln(1 + z) − z
z(1 + 2z) − (1 + z) ln(1 + z)

= lim
z↓0

z
(1+z)2

z(3+2z)
(1+z)2

= lim
z↓0

1
3 + 2z

= 1
3
,
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atayev and janssen 21

(where we used l’Hopital’s rule to obtain third and final lines in the last limiting result), which
implies that as q ↑ 1, the second term in the denominator of the RHS of (A.1) goes to ∞,
since η multiplied by the terms in the square brackets converges to a strictly positive finite
value and 1 − η ln(1 + 1/η) converges to zero.

The only thing left to show is that the above construction yields an RPE where indeed
r ≤ v. To see this, first note that if s = 0 there is an RPE where r = 0 and q = 1 and that r
and q are continuous functions of s. Thus, r < v for small enough values of s. Next, we argue
that it cannot be the case that in an active market r = v. As long as r ≤ v, we can rewrite (1)
as r = E[p] + s so that the expected benefit of actively searching is given by v − E[p] − s =
v − r. Clearly, at r = v this expected benefit of search equals 0. However, the expected bene-
fit of waiting remains strictly positive, which implies that consumers have no incentive to ac-
tively search, or q = 0, a contradiction. In other words, (A.1) can only hold if r < v. Thus, as
all endogeneously determined variables are continuous in s, there must exist a critical value of
s, denoted by s such that an RPE exists for s < s, whereas for all s > s, there does not exist a
0 < q < 1 such that (A.1) holds.

Now, we show the limiting price for s ↓ 0. We know that s approaching zero is associated
with q ↑ 1, or η → ∞ meaning that price dispersion vanishes. Then, it suffices to evaluate the
limiting value of r. We note that

r = s

1 − η ln
(

1 + 1
η

)

=
(
1 − δ

(
1 − (1 − q)k

))
v

1 − η ln
(

1 + 1
η

)
+ (1 − δ(1 − (1 − q)k))η ln

(
1 + 1

η

)
+

(
δμ2
1−q

)
η
(

(1 + 2η) ln
(

1 + 1
η

)
− 2

) .

Notice that as q ↑ 1, the numerator converges to (1 − δ)v. The first two terms and the last
term in the denominator converge to zero as η → ∞, since

lim
η→∞ η

(
(1 + 2η) ln

(
1 + η

η

)
− 2

)
= lim

z↓0

(
(1 + 2

z ) ln (1 + z) − 2
)

z

= lim
z↓0

((z + 2) ln (1 + z) − 2z)
z2

= lim
z↓0

ln(1 + z) + 2+z
1+z − 2

2z

= lim
z↓0

(1 + z) ln(1 + z) − z
2z(1 + z)

= lim
z↓0

ln(1 + z) + 1 − 1
2 + 4z

= 0

(where we used l’Hopital’s rule to obtain the third and final lines) whereas the remaining term
in the denominator converges to 1 − δ. Therefore, we have that lims↓0 r = v(1 − δ)/(1 − δ) =
v.

The proof of the theorem is now complete.

Proof of Proposition 1. Note that the additional social benefit of a consumer searching is
strictly larger than

(
1 − δ + δ(1 − q)k)v − s
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22 atayev and janssen

as firms also benefit from a sale without delay. Using (2), it follows that

(
1 − δ + δ(1 − q)k)v − s

= (
1 − δ + δ(1 − q)k)v − (

1 − δ + δ(1 − q)k)(v − E[p])

+δ

(
1 + (1 − q)k − 2

(
1 − q

2

)k
)

(E[p] − E[min{p1, p2}])

>
(
1 − δ + δ(1 − q)k)E[p] + δ

(
1 + (1 − q)k − 2

(
1 − q

2

)k
)

(E[p] − E[min{p1, p2}])

> 0.

This means that from the perspective of social welfare, consumers search too little. This com-
pletes the proof of the proposition.

Proof of Proposition 2. Active markets with 0 < q < 1 in the limit as k → ∞ can exist
only if (A.1) holds in the limit. For any 0 < q < 1, as k → ∞ μ1 converges to 0, μ2 to (1 − q)
and so η converges to q/(2δ(1 − q)). As for 0 < q < 1, the terms (1 − q)k and (1 − q/2)k on
the RHS of (A.1) converge to zero when k → ∞, the limiting indifference condition is ap-
proximately

s
v

= 1 − δ

1 + limk→∞ η

1−η ln (1+ 1
η )

[
(1 − δ) ln

(
1 + 1

η

)
+ δ

(
(1 + 2η) ln

(
1 + 1

η

)
− 2

)] .

Since the RHS approaches 0 if η → ∞ and 1 − δ if η ↓ 0, whereas it is positive for any finite
η > 0, it is clear that this equation can always be satisfied for some strictly positive and finite η

if s < (1 − δ)v. It follows that for any s < (1 − δ)v, one can find a critical value k̂(s) such that
for larger values of k, an RPE exists.

Price dispersion remains as k → ∞ if η remains strictly positive and finite. However, we
know that η remains finite and, moreover, it is strictly positive for 0 < s < (1 − δ)v.

Proof of Proposition 3. Observe that changes in s affect the LHS of (A.1) only. In partic-
ular, the LHS is increasing in s. As the RHS of the indifference equation (A.1) must be de-
creasing in q in a stable RPE, the optimal search probability of indifferent buyers q must be
decreasing in s.

Proof of Proposition 4. Some parts of the proof are similar to the proof of Theorem 1. In
order to avoid repetition, we omit some details here. We first argue that in an equilibrium with
active sales it cannot be that qc = qp. Clearly, there are no active sales if qc = qp = 0. Also, as
argued in Lemma 2, it cannot be the case in equilibrium with active sales that qc = qp = 1. To
rule out that 0 < qc = qp < 1, suppose to the contrary that 0 < qc = qp < 1. This would im-
ply that the core and a consumer in the periphery are both indifferent between searching and
waiting in equilibrium. Searching yields a payoff equal to v − E[p] − s to both. Since qc ≤ qp

implies that 1 − qc > (1 − qp)k and (1 − (1 − qp)k)(v − E[p]) > qc(v − E[p]), waiting yields
the core a payoff larger than δ(1 − (1 − qp)k)(v − E[p]), which is larger than the payoff a
consumer in the periphery obtains from waiting, which is δqc(v − E[p]). This, however, im-
plies that for 0 < qc = qp < 1, it cannot be that both the core and a periphery are simultane-
ously indifferent between waiting and searching.

Thus, in the sequel, we consider first the case where qc < qp and then where qc > qp.
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atayev and janssen 23

Case: qc < qp. We show that for small search costs, the equilibrium has qp = 1 and qc ∈
(0, 1). The conditions for this to be true are that

v − E[p] − s =δ
(
1 − (1 − qp)k)(v − E[p])

+ δ

(
1 + (1 − qp)k − 2

(
1 − qp

2

)k
)

(E[p] − E[min{p1, p2}]),

v − E[p] − s >δqc(v − E[p]).

First, from the above argument it follows that the equality and the inequality are consistent
with each other for any 0 < qc < qp ≤ 1: searching yields the same payoff to both the core and
a periphery, while we have argued above that qc < qp implies that waiting yields the core a
payoff, given by the RHS of the equation, that is larger than the payoff of waiting to a con-
sumer in the periphery, given by the RHS of the inequality. Thus, in this case, if the core is in-
different between searching and waiting, the periphery consumers must prefer to search them-
selves. So, it must be that qp = 1 for any 0 < qc < qp.

As for s small enough r ≤ v and setting qp = 1, we first rewrite the equation in (7) as

s
v

= 1 − δ

1 + η

1−η ln (1+ 1
η )

[
(1 − δ) ln

(
1 + 1

η

)
+ δ(k+1)

1−qc
μ2

(
(1 + 2η) ln

(
1 + 1

η

)
− 2

)] ,

where η only depends on qc and hence the equation determines qc. As in the proof of Theo-
rem 1, one can establish that the RHS of the equation is positive for any 0 < qc < 1 and con-
verges to zero as qc ↑ 1, which is associated with μ2 ↓ 0 and η → ∞. Thus, this equilibrium
exists for s close to 0. Finally, applying reasoning similar to the proof of Theorem 1, one can
evaluate the limiting result: lims↓0 r = v.

Case: qc > qp. Note that from the above argument, it follows that the equations in (8) can
only hold simultaneously if qc > qp. Next, assuming that r ≤ v, we first rewrite (8) as

s
v

= 1 − δ + δ(1 − qp)k

1 + η

1−η ln (1+ 1
η )

[
(1 − δ + δ(1 − qp)k) ln

(
1 + 1

η

)
+ δ(k+1)

1−qc
μ2

(
(1 + 2η) ln

(
1 + 1

η

)
− 2

)] ,

s
v

= 1

1
1−δqc

+ η ln (1+ 1
η )

1−η ln (1+ 1
η )

.

From these equations, we observe that the RHSs of both equations converge to zero as η →
∞, which is the case if, and only if, qc ↑ 1. If such an equilibrium exists, employing a similar
line of reasoning as in the proof of Theorem 1, one can show that in equilibrium with positive
trade it must be that r < v and r ↑ v as s ↓ 0.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information sec-
tion at the end of the article.

Figure 1: Impact of δ on firm profit where firms do not discount future profits
Figure 2: Impact of δ on firm profit normalized by 1+δ

references

Aker, J., “Information from Markets Near and Far: Mobile Phones and Agricultural Markets in Niger,”
American Economic Journal: Applied Economics 2 (2010), 46–59.

———, and I. Mbiti, “Mobile Phones and Economic Development in Africa,” Journal of Economic Per-
spectives 24 (2010), 207–32.

Arbatskaya, M., and H. Konishi, “Consumer Referrals,” International Journal of Industrial Organiza-
tion 48 (2016), 34–58.

Atayev, A., and M. Janssen, “Information Acquisition and Diffusion in Markets,” CEPR Discussion Pa-
per DP14036, 2023.

Biyalogorsky, E., E. Gerstner, and B. Libai, “Customer Referral Management: Optimal Reward Pro-
grams,” Marketing Science 20 (2001), 82–95.

Bloch, F., “Targeting and Pricing in Social Networks,” in Y. Bramoulle, A. Galeotti and B. Rogers, eds.,
Oxford Handbook of the Economics of Networks (Oxford: Oxford University Press, 2016), 776-791.

Brown, J., and A. Goolsbee, “Does the Internet Make Markets More Competitive? Evidence from the
Life Insurance Industry,” Journal of Policitcal Economy 110 (2002), 481–507.

Burdett, K., and K. Judd, “Equilibrium Price Dispersion,” Econometrica 51 (1983), 955–69.
Campbell, A., “Word-of-Mouth Communication and Percolation in Social Networks,” American Eco-

nomic Review 103 (2013), 2466–98.
———, “Social Learning with Differentiated Products,” RAND Journal of Economics 50 (2019), 226–48.
———, M. Leister, and Y. Zenou, “Word-of-Mouth Communication and Search,” RAND Journal of

Economics 51 (2020), 676–712.
Chen, Y., Q. Wang, and J. Xie, “Online Social Interactions: A Natural Experiment on Word of Mouth

Versus Observational Learning,” Journal of Marketing Research 48 (2011), 238–54.
Chen, Y.-J., Y. Zenou, and J. Zhou, “Competitive Pricing Strategies in Social Networks,” RAND Jour-

nal of Economics 49 (2018), 672–705.
Chuhay, R., “Pricing Innovation in the Presence of Word-of-Mouth Communication,” Working Paper

WP9/2015/01, Higher School of Economics, 2015.
Diamond, P., “A Model of Price Adjustment,” Journal of Economic Theory 3 (1971), 156–68.
Ellison, G., and D. Fudenberg, “Word-of-Mouth Communication and Social Learning,” Quarterly

Journal of Economics 110 (1995), 93–125.
Fainmesser, I., and A. Galeotti, “Pricing Network Effects,” Review of Economic Studies 83 (2016), 165–

98.
———, and ———, “Pricing Network Effects: Competition,” American Economic Journal: Microeco-

nomics 12 (2020), 1–32.
Fershtman, C., and A. Fishman, “Price Cycles and Booms: Dynamic Search Equilibrium,” American

Economic Review 82 (1992), 1221–33.
Galeotti, A., “Talking, Searching, and Pricing,” International Economic Review 51 (2010), 1159–74.
———, and S. Goyal, “Influencing the Influencers: A Theory of Strategic Diffusion,” RAND Journal of

Economics 40 (2009), 509–32.
———, and ———, “The Law of the Few,” American Economic Review 100 (2010), 1468–92.
Godes, D., and D. Mayzlin, “Using Online Conversations to Study Word-of-Mouth Communication,”

Marketing Science 23 (2004), 545–60.
Goyal, S., S. Rosenkranz, U. Weitzel, and V. Buskens, “Information Acquisition and Exchange in So-

cial Networks,” The Economic Journal 127 (2016), 2302–31.
Gray, W., and A. Kern, “Talking Your Book: Social Networks and Price Discovery,” SSRN Working Pa-

per, 2011.
Grossman, S. J., and J. E. Stiglitz, “On the Impossibility of Informationally Efficient Market,” Ameri-

can Economic Review 70 (1980), 393–408.
Han, B., and L. Yang, “Social Networks, Information Acquisition, and Asset Prices,” Management Sci-

ence 59 (2013), 1444–57.
Hayek, F., “The Use of Knowledge in Society,” American Economic Review 35 (1945), 519–30.
Honda, J., “Intermediary Search for Suppliers in Procurement Auctions,” WU Department of Eco-

nomics Working Paper No. 203, 2015.

 14682354, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12672 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [02/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



atayev and janssen 25

Janssen, M., and J. L. Moraga-Gonzalez, “Strategic Pricing, Consumer Search and the Number of
Firms,” Review of Economic Studies 71 (2004), 1089–118.

———, ———, and M. R. Wildenbeest, “Truly Costly Sequential Search and Oligopolistic Pricing,” In-
ternational Journal of Industrial Organization 23 (2005), 451–66.

Jensen, R., “The Digital Provide: Information (Technology), Market Performance, and Welfare in South
Indian Fisheries Sectior,” Quarterly Journal of Economics 122 (2007), 879–924.

Jun, T., and J.-Y. Kim, “A Theory of Consumer Referral,” International Journal of Industrial Organiza-
tion 26 (2008), 662–78.

Katz, E., and P. F. Lazarsfeld, Personal Influence (New York: Free Press, 1955).
Kohn, M., and S. Shavell, “The Theory of Search,” Journal of Economic Theory 9 (1974), 93–123.
Kornish, L., and Q. Li, “Optimal Referral Bonuses with Asymmetric Information: Firm-Offered and In-

terpersonal Incentives,” Marketing Science 29 (2010), 108–21.
Miegielsen, S., “Consumer Information Networks,” KU Leuven Discussion Paper Series. DPS14.14,

2014.
Seiler, S., S. Yao, and W. Wang, “Does Online Word of Mouth Increase Demand? (And How?) Evi-

dence from a Natural Experiment,” Marketing Science 36 (2019), 838–61.
Stahl, D. O., “Oligopolistic Pricing with Sequential Consumer Search,” American Economic Review 79

(1989), 700–712.
Stigler, G., “The Economics of Information,” Journal of Political Economy 69 (1961), 213–25.
van Leeuwen, B., T. Offerman, and A. Schram, “Competition for Status Creates Superstars: An Exper-

iment on Public Good Provision and Network Formation,” Journal of European Economic Associa-
tion 18 (2020), 666–707.

Varian, H. R., “A Model of Sales,” American Economic Review 70 (1980), 651–59.
Wolinsky, A., “True Monopolistic Competition as a Result of Imperfect Information,” Quarterly Jour-

nal of Economics 101 (1986), 493–512.

 14682354, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12672 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [02/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


