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We study a search platform ranking firms’ products across sponsored and
organic positions, accounting for the incentives of both firms and consumers.
To characterize an optimal ranking when the number of firms is large, we
formulate a Mixing Principle for Consumer Search, adapting tools from the
social learning literature. The platform assigns the products it deems best to
sponsored positions and obfuscates the content of organic positions subject
to consumers’ participation constraints. Obfuscation serves to maximize the
platform’s revenue from both sponsored position auctions and commission fees.
Our results allow us to analyze the welfare effects of sponsored positions.

In 2024, the worldwide market for digital advertising is projected to reach $740bn. Its
biggest component—accounting for about 40% or $307bn—is search advertising.1 Search
platforms (such as Google, Tripadvisor or Yelp) assist consumers looking for a product or
service.2 The consumer submits a keyword, the platform provides a list of results, and the
consumer inspects these results in whatever order they prefer. In producing this list, the
platform may draw on information about the consumer (demographics, past searches, order
histories, etc.) as well as on other consumers’ behavior. Search advertising refers to the
∗We are grateful to Nageeb Ali, Simon Anderson, Heski Bar-Isaac, Marco Battaglini, Emiliano Calvano, Federico Echenique, William
Fuchs, Kinshuk Jerath, Justin Johnson, Bruno Jullien, Louis Kaplow, Tony Ke, H. Tai Lam, Massimo Motta, Volker Nocke, Antonio
Penta, Patrick Rey, Sandro Shelegia, Vasiliki Skreta, Steve Tadelis, Nikhil Vellodi, Rakesh Vohra, Michael Waldman, Mark Whitmeyer,
Leeat Yariv, Yang Yu and seminar participants at the Workshop on Digital Platforms (Barcelona, 2022), The Economics of Platforms
Workshop (Capri, 2023), SAM Workshop (Bristol, 2023), IIOC (Washington D.C., 2023), Consumer Search and Switching Cost
Workshop (Rotterdam, 2023), SAET (Paris, 2023), Strategy and Economics of Digital Markets Conference (Ithaca, 2023), EARIE (Rome,
2023), Tinbergen Institute Digital Platform Conference (Amsterdam, 2023), AMES (Beijing, 2023), Norwegian Business School (Oslo,
2024) and Hal White Antitrust Conference (2024), for their helpful comments and valuable discussions. All remaining errors are our own.

1See https://www.statista.com/outlook/dmo/digital-advertising/worldwide. The other major digital advertising categories are audio, banner,
classifieds, influencer, in-app, social media and video, none of which generates an amount of spending comparable to search advertising.

2We refer to search platforms and platforms interchangeably throughout.

https://www.statista.com/outlook/dmo/digital-advertising/worldwide


practice of platforms to auction specific positions in the list of search results to advertisers
(firms) for their products or services.

The power of these paid search results, or sponsored positions, stems from (a) the way
they steer consumer search activity and (b) the platform leveraging its information about
consumers. Online search pioneers and Google founders Sergey Brin and Larry Page
discussed the commercial value of sponsored positions (slots) well before the advent of
search advertising, warning of their implications:

“We expect that advertising funded search engines will be inherently biased
towards the advertisers and away from the need of the consumers.”3

In this paper, we study how search platforms leverage their information to shape online
markets by creating a ranking to maximize their revenue from both selling sponsored slots
and earning commission fees. We show that when ranking a large number of search results,
a platform has an incentive to assign the firms it deems most relevant for the consumer
to sponsored positions, while obfuscating the remaining results across organic positions
(Theorem 1). Thus, the impact of sponsored positions and their welfare effects are more
complex than this quote suggests.4

The extent to which the platform is able to obfuscate organic positions depends on consumers’
outside option. To ensure consumers who do not buy from sponsored positions inspect
organic ones rather than leave the platform, the platform may find it optimal to introduce
premium positions across which it obfuscates more relevant products (Theorem 2).5

Obfuscation plays a dual role in maximizing auction revenue from sponsored slots and
commission fees. On one hand, by obfuscating organic search results, the platform increases
the probability a consumer buys from a sponsored position, raising advertisers’ valuation
of obtaining such a position. On the other hand, if the consumer does not buy from the
sponsored slot, obfuscation causes them to inspect a larger number of organic positions,
increasing the platform’s expected earnings from commission fees.
3This quote first appeared in 1998 in the appendix of a paper later in the same year published as Brin and Page (1998) introducing the
Google search engine to the wider scientific community.

4This result is supportive of the FTC’s recent announcement to sue Amazon for products by deliberately worsening search quality in
order to increase their profits (see https://www.ftc.gov/news-events/news/press-releases/2023/09/ftc-sues-amazon-illegally-maintaining-
monopoly-power).

5The relevance of premium positions is supported by empirical findings that consumers overwhelmingly search more prominent positions.
In the case of Amazon, for example, more than 80% of clicks happen on the first page (Yu, 2024).
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Even though our results indicate that a platform’s ranking of search results does not reveal its
entire information, we find the platform has an incentive to invest in learning about consumers,
as better information increases firm’s bids for sponsored positions and the platform’s ability
to assign firms relevant for the consumer to premium positions.6 Abandoning sponsored
positions may actually decrease consumer welfare.

Building on the seminal consumer search papers of Wolinsky (1986) and Anderson and
Renault (1999), we study a search platform providing a ranking of a finite but large number
of keyword-relevant firms in response to a representative consumer query. Leveraging
its access to rich consumer data, the platform has some understanding of the consumer’s
preferences, represented by a match score for each firm that is informative of the consumer’s
ultimate match value. The platform chooses a ranking algorithm assigning firms across one
sponsored and many organic positions based on their bids and match scores. In our baseline
model—which we extend in several directions—ex ante symmetric firms submit bids for
the sponsored slot and charge a uniform price. The consumer then sequentially inspects the
platform’s search results in their preferred order, each time incurring a search/inspection
cost, until they acquire a product/service or abort search altogether.

As the ranking of search results is strategically chosen by the platform and match scores and
match values are correlated, inspecting one slot allows consumers to learn about the value of
products not yet inspected. It is well-known that learning in consumer search complicates
the characterization of the optimal search behavior; see, e.g., Rothschild (1974), Janssen
et al. (2017) and Garcia and Shelegia (2018). By means of examples we show that due
to learning, with a small number of search results it may neither be optimal to obfuscate
organic slots nor to assign the sponsored slot to the firm with the best match score.

We overcome these issues by adapting the so-called mixing property of stochastic processes
described within the context of social learning (Mossel et al., 2020), introducing a Mixing
Principle for Consumer Search. It states that—due to the independence of match values
across firms—the match value of the firm in the sponsored slot can be strongly correlated
with the match values of at most a few firms in organic positions (Lemma 1). As such, when
the number of search results increases, additional information about the continuation value
of search conveyed by a realized match value vanishes. We believe that our Mixing Principle
6The extent to which user data collection can be excessive plays an important role in the current antitrust case in front of the United States
District Court for the District of Columbia vs. Google LLC.
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is fruitful for other search and inspection environments in which learning is important.

In order to understand why full obfuscation—i.e., minimizing information provision—of
organic slots is optimal with a larger number of firms, consider the consumer’s problem.
Under full obfuscation, they essentially pick a random firm once they search beyond the
sponsored slot.7 It follows that full obfuscation minimizes the consumer’s utility from
inspecting organic positions, thereby minimizing the likelihood of the consumer to search
beyond the sponsored slot. As a result, advertisers’ willingness to bid for the sponsored slot
is maximized, even though obfuscation minimizes the probability that a consumer returns
to the sponsored slot (return demand). The Mixing Principle, imposing bounds on return
demand, is essential in establishing this obfuscation result.

The logic of why the platform designs the auction such that the firm with the highest match
score wins the the sponsored slot is as follows. Note that in our baseline model all firms
submit identical bids. As a consequence, the sponsored position contains informational
value for both consumers and firms when the platform assigns the highest match score firm
to the sponsored slot in case of a tie. Therefore, consumers examine the sponsored slot first.
Firms, on their part, learn about their favorable match score through winning the auction,
raising their willingness to bid. Thus, it is not benevolence that drives platforms to take
match scores into account when allocating the sponsored slot (instead of selling the slot to
the highest bidder). In fact, doing so increases firms’ bids to acquire the sponsored position.

We also show that the better a search platform is able to predict consumers’ match values (in
the sense of Lehmann (1988)) the higher platform profits and consumer surplus (Proposition
1). Consumers are more likely to buy from the sponsored slot if a firm with a more predictive
match score wins the sponsored position. As a result, firms are willing to up their bids for
the sponsored position, while consumers expect both a better match and lower search costs.

Obfuscating organic positions does not only maximize the advertising firms’ willingness
to bid for the sponsored position, but also the number of organic slots a consumer is
expected to inspect. As such, the probability of a sale intermediated by the platform
increases, independent of both whether the platform offers sponsored positions or not and the
consumer’s outside option. The consumer’s alternatives do however affect the set of firms
over which the platform randomizes. The better the outside option, the higher the match
7This remains true with premium positions when the consumer has a viable outside option.
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scores of the firms assigned to premium positions. When prices are uniform, maximizing
sales probability maximizes sales commissions. Therefore, full obfuscation optimizes both
the auction revenue from the sponsored slot and sales commissions.

Our main obfuscation result persists when adding other real-world features of search
advertising. If firms also hold consumer-relevant information, the platform can extract this
information through the auction for the sponsored slot. Thus, our main intuition about
an informative sponsored slot and obfuscation of organic slots persists (Proposition 2).
Alternatively, when firms quote different prices, the platform continues to obfuscate organic
positions and sells the sponsored slot to the firm with the highest match value (Proposition
3). However, to earn high commission fees, the platform now will put firms with higher
match score and the highest prices in premium positions (Corollary 1). Thus, heterogeneous
prices generate another reason to obfuscate over premium positions.

Finally, we address welfare effects of introducing sponsored positions by investigating how
the platform ranks products in the absence of sponsored positions. Note that the platform’s
asymptotically optimal ranking creates several inefficiencies, harming consumers. First, the
expected match value of consumers who buy at the sponsored position decreases (as, with
obfuscation consumers are more willing to stop searching than without). Second, consumers
who continue to search beyond the first position expect to spend more time inspecting other
products to achieve any given match value. Finally, with heterogeneous prices, consumers
tend to pay higher prices in organic slots as these firms generate higher commissions from
a sale for the platform. If in the absence of sponsored positions, the platform maximizes
only sales commissions revenue, then (perhaps surprisingly) consumers are even worse
off (Corollary 2). Independent of whether the platform offers sponsored positions, it fully
obfuscates organic slots. With a sponsored position, however, the platform allocates the top
spot to a firm with the best match score, providing the consumer with more information.

Starting with Athey and Ellison (2011), Chen and He (2011) and Eliaz and Spiegler (2011),
a growing literature on position auctions explicitly takes into account that the value of a
position depends on consumers’ search patterns.8 In contrast to these papers, we focus on
a platform that has information about consumer preferences, allowing us to address the
important policy question of how online search platforms leverage their information about
8Other important papers on information gatekeepers include Baye and Morgan (2001), Armstrong and Zhou (2011) and De Corniere and
Taylor (2019).
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consumers to steer consumer search.

More recent papers on search platforms have addressed questions that are different from
ours such as which rankings maximize consumer and industry surplus (Anderson and
Renault, 2021), and the effects of brand advertising (Motta and Penta, 2022), different sales
mechanisms of sponsored positions (Bar-Isaac and Shelegia, 2022) or a social influencer
recommending products Janssen and Williams (2022).9 None of these papers consider,
however, the issues we address related to the effects of sponsored positions.10

In the context of a multi-product firm, Nocke and Rey (2023) find that “garbling” of
information may be optimal for the seller as it induces a buyer to inspect a larger number of
items before terminating search. This is related to the second role of obfuscation in our paper.
Similar to Chen and He (2011) and Anderson and Renault (2021), however, in their paper a
firm-consumer pair either constitutes a match or not, and the value of this match is constant
across firms. As a consequence, consumers do not learn about firms not yet inspected. Also,
neither of these papers studies the interactions of sponsored and organic positions.

The effects of sponsored slots and different rankings of organic slots on choices have also
been studied empirically. Ghose et al. (2014), Ursu (2018), and Donnelly et al. (2022),
among others, show that personalized rankings affect consumer choices and induce positive
welfare effects. Using a field experiment of mobile search platforms in 13 Asian cities where
consumers search for restaurants, Sahni and Nair (2020) find that users significantly more
often call at restaurants if these have acquired a sponsored position. In line with our main
result, this suggests sponsored slots provide valuable information to consumers.

The remainder of this paper is organized as follows. Section 1 introduces the main model.
Section 2 presents our main results, which Section 3 generalizes to scenarios where (i)
both the platform and the firms hold consumer-relevant information and to (ii) firms with
heterogeneous prices. In Section 4 we discuss the welfare effects of sponsored positions and
how they depend on the platform’s objectives. Finally, Section 5 concludes with a discussion.
9Armstrong and Zhou (2022) consider how information provision affects consumers in the absence of consumer search.
10Long et al. (2022) and Ke et al. (2022) also analyze how a platform uses its information about consumer preferences to allocate firms to

sponsored and organic positions, but their modeling is very different and consumer learning plays a very limited role.
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1 The Model

The market comprises a platform, 𝑛 firms selling horizontally differentiated products, and
a representative consumer. The consumer demands one unit of the product and has an
unobserved match value 𝑣𝑖 with firm 𝑖. Match values are independently and identically
distributed across firms according to a continuous distribution 𝐺 with bounded support
[
¯
𝑣, 𝑣̄] ⊂ R.11 The platform’s information regarding the consumer’s match value with firm
𝑖 is summarized by a match score 𝜃𝑖, following a continuous distribution 𝐹 (𝜃𝑖 |𝑣𝑖) with
compact support [

¯
𝜃, 𝜃] ⊂ R. Higher scores indicate “good news” in the sense that 𝐹 (·|𝑣′

𝑖
)

has likelihood ratio dominance over 𝐹 (·|𝑣𝑖) if 𝑣′
𝑖
≥ 𝑣𝑖, i.e., a higher match score is suggestive

of a higher match value. Let 𝑧 denote an independent non-atomic random variable with
support 𝑍 that the platform can use as a randomization device to play a mixed strategy.
We then denote the probability measure on Ω = [

¯
𝜃, 𝜃]𝑛 × [

¯
𝑣, 𝑣̄]𝑛 × 𝑍 by 𝜇 and denote

probabilities and expectations w.r.t. 𝜇 by P[·] and E[·], respectively.

The platform displays a ranking 𝑥 ∈ 𝑋 of the firms to the consumer, where 𝑋 denotes the set
of firm permutations.12 The platform forms the ranking by running an auction in which firms
submit bids, the winner of the auction is placed at the top in the “sponsored” position (i.e.
𝑥(𝑖) = 1 implies 𝑖 is sponsored), and all other firms are allocated to the remaining “organic”
positions. Denote firm 𝑖’s bid by 𝑏𝑖 ≥ 0. Given the bids and scores, the platform’s algorithm
determines which firm wins the sponsored position and how the remaining firms are allocated
to the organic positions. The platform’s algorithm is a function mapping bids, scores, and
realizations of the randomization device to rankings, 𝑎 : R𝑛+ × [

¯
𝜃, 𝜃]𝑛 × 𝑍 → 𝑋 . Let A𝑛

denote the set of (measurable) algorithms in the game with 𝑛 firms. Denoting the vector of
bids by b = (𝑏1, 𝑏2, . . . , 𝑏𝑛), the platform also specifies a payment rule 𝜌 : R𝑛+ → R𝑛+ with
𝜌(b) = (𝜌1(b), . . . , 𝜌𝑛 (b)) and whereby 𝜌𝑖 (b) ≤ 𝑏𝑖 is the amount firm 𝑖 pays the platform
conditional on it winning the sponsored position. Let P𝑛 denote the space of (measurable)
payment rules in the game with 𝑛 firms.

Note that the algorithm and payment rule jointly define the structure of the sponsored
search auction. For example, an algorithm that always places a firm with the highest bid in
the sponsored position and a payment rule satisfying 𝜌𝑖 (b) = 𝑏𝑖 correspond to a standard
11The results can be extended to the case with unbounded match values.
12That is, 𝑋 is the set of bijections from {1, . . . , 𝑛} to itself.
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first-price auction. More generally, the platform can use the information contained in the
scores to determine the winner of the auction.

Consumers are initially uninformed of their match values with firms and can only uncover
them through costly sequential search. At each point along the search path, the consumer
can select any position in the ranking and incur the inspection cost 𝑠 > 0 to learn the match
value with the firm located in that position, buy the good from a firm whose match value
the consumer has already inspected, or exit the market and take an outside option 𝜂 ∈ R at
the same price 𝑝.13 Defining 𝑟 (𝜙) to be the reservation value for a firm with match value
above 𝜙 (i.e. E [max{𝑣𝑖 − 𝑟 (𝜙), 0}|𝜃𝑖 ≥ 𝜙] = 𝑠), we focus on the interesting case in which
𝜂 < 𝑟 (𝜃)—otherwise, no algorithm designed by the platform attracts consumers.

When searching they only observe their match values with different firms but not the
platform’s match score. In principle, the consumer search problem is reminiscent of
Pandora’s box problem as studied in Weitzman (1979). However, knowledge that the
platform utilizes in a ranking algorithm creates interdependence between match values so
that inspecting the goods of one firm provides the consumer with information about other
firms. Consumers have perfect recall when searching.

The timing of interaction is as follows. First, the platform commits to an algorithm and
payment rule observed by the firms and consumer. Second, firms privately submit their
bids to the platform. Third, Nature determines the match scores and values. Fourth, the
platform receives the firms’ scores and bids, and the algorithm determines the position each
firm takes in the list. The consumer receives the list and then proceeds with their search. At
each point along the search path, the consumer’s information consists of the the algorithm,
payment rule, as well as the realized match values at all positions previously inspected.

Consumers receive the match value minus the price of a good they purchase net the search
costs. A firm’s profit equals the revenue minus production cost and any fee paid for the
sponsored position. Unless explicitly stated otherwise (as in Sections 3.2 and 4) we assume
that all firms charge price 𝑝 and normalize their production costs to 0. The platform’s
expected profit corresponds to the sum of the expected revenue from the sponsored search
auction and the expected revenue from sales commission fees, i.e., a fee firms pay in the
case of a transaction that is a fixed percentage 𝑞 ≥ 0 of the transaction sum. We focus on
13Assuming the consumer’s outside option 𝜂 to come at price 𝑝 simplifies notation but is innocuous for our results. In essence, at every

point in time, the consumer buys from the platform or continues to search only if their expected payoff from doing so exceeds 𝜂 − 𝑝.
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symmetric Perfect Bayesian Equilibria.

We end this section with a few comments on the model. First, we assume that the platform
commits to its ranking algorithm. We see this as a reasonable approximation of the real
world situation where platforms submit a ranking of alternatives within a split second after
the consumer has typed its key words. Consumers typically use the same platform repeatedly
learning about how the resulting rankings satisfy their needs. Platforms may, of course, work
on different algorithms to improve their functioning, but will implement new algorithms
only once in a while. Without commitment, other outcomes than the ones we focus on in this
paper may be supported. For example, if firms and consumers believe that the platform’s
ranking, including the sponsored position, is completely random, then the platform may not
be able to do better than indeed randomly allocating firms to positions.

Second, the questions we address are akin to the ones studied in the literature on information
design, as initiated by Kamenica and Gentzkow (2011), in the sense that the platform chooses
which information to release to firms and consumers. However, unlike most of that literature,
the platform’s choice set is limited in that it can only choose a ranking of alternatives and
gives the same information to both consumers and firms.

Third, the platform may decide not to rank all firms. However, it is clear that as the platform
also generates revenue from commissions, it will never want to do so. In the worst case, the
platform can always rank items in such a way that consumers will decide themselves not to
search among a subset of the items.

Fourth, the model treats firms’ prices as exogenous. In particular, prices do not depend on
whether or not a firm is recommended. We think that this is realistic in many cases in which
the revenue a firm makes is only to a limited extent dependent on the sales via the search
platform. Implicitly, we also assume that all firms charge identical prices, but that turns out
to be inessential as we will explain in 3.2.

2 Obfuscation to Maximize Revenue

In this section we state and explain our main result: as the number of firms grows large, it is
optimal for the platform to obfuscate the organic slots to the maximal extent possible—subject
to consumer participation constraints—and to allocate the sponsored position to the firm
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with the highest match score. To focus on how consumers learn along their search path and
how our Mixing Principle deals with that, we initially simplify and consider in subsection 2.1
that the consumers’ outside option is not binding so that even if the platform fully obfuscates
the organic slots consumers continue to use the platform if the sponsored position did not
result in a good enough match. As such, revenues from sales commissions are automatically
generated when consumers find a good match eventually. By means of two examples, we
show in this part of the analysis that for small 𝑛 the optimal algorithm may neither obfuscate
organic slots nor to put the firm with the highest match score in the sponsored position.

Then in subsection 2.2, we consider a binding outside option, i.e., if the platform uniformly
obfuscates all organic positions, consumers will not choose to search any organic slots. This
outside option may reflect competition among platforms, alternative sales channels and the
availability of substitute products. In order to generate maximal revenue from both the
sponsored slot and commission fees, the platform will then determine a subset of firms with
the best match scores and randomly assign these firms to limited “premium positions” such
that the consumer finds it optimal to continue searching these positions until they find a
product with a good enough match.

Even though a platform does not have the incentive to provide a full ranking according
to match scores, it still has an incentive to invest in acquiring information on consumers’
match values. To further emphasize this point, we show in subsection 2.3 that the platform
generates more revenue if its match scores are better predictors of consumers’ match values.

Our analysis focuses on an algorithm that yields approximately maximal profits when the
number of firms to be ranked gets large.14 To this end, it is important to note that after
choosing the algorithm and payment rule, a proper subgame is played by the firms, the
consumer, and nature. Let X𝑛 ⊂ A𝑛 × P denote the nonempty subset of algorithms and
payment rules for which an equilibrium of the subgame exists. We focus on the “platform’s
preferred equilibria" of the subgame by defining Π :

⋃∞
𝑛=1 X𝑛 → R to be the supremum of

the platform’s expected profit taken over the equilibria of the subgame. The results can be
extended to apply to any arbitrary selection of equilibria through the use of more complicated
algorithms. Thus, in this paper we define asymptotic optimality as follows.

Definition 1. A sequence {𝑎𝑛, 𝜌𝑛}𝑛∈N is asymptotically optimal if for every sequence
{𝑎′𝑛, 𝜌′𝑛}𝑛∈N and 𝜖 > 0 there exists an 𝑛∗ such that 𝑛 ≥ 𝑛∗ implies Π(𝑎𝑛, 𝜌𝑛) + 𝜖 > Π(𝑎′𝑛, 𝜌′𝑛).
14For finite 𝑛 there is not one algorithm that is approximately optimal which follows from our examples below.
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2.1 Non-Binding Outside Option

To specify a non-binding outside option, we define the function 𝑑𝑖 : R × ΔΩ → R by

𝑑𝑖 (𝑣, 𝜆) =
∫
Ω

max{𝑣𝑖 − 𝑣, 0}𝑑𝜆(𝜔) − 𝑠, (1)

which reflects the option value of inspecting firm 𝑖 and paying the search cost 𝑠 when the
consumer can alternatively select a product with value 𝑣 and the distribution over the state
is 𝜆. Observe that 𝑑𝑖 (𝑣, 𝜆) is strictly decreasing in 𝑣 whenever max supp𝜆 > 𝑣 and takes
the value of 𝑠 otherwise. The ex ante reservation price is the unique value 𝑟 satisfying
𝑑𝑖 (𝑟, 𝜇) = 0. Given only the prior, the consumer is indifferent between taking a good with
value 𝑟 and first inspecting firm 𝑖 and then taking the larger value between the two. We will
say that a consumer has a non-binding outside option if 𝜂 < 𝑟.

Next we define a class of algorithms, where the match value found at an organic position
does not convey any information about the match value at other organic positions.

Definition 2. An algorithm 𝑎 ∈ A𝑛 exhibits uniform obfuscation if the firms that lose the
auction are assigned to each of the organic positions with uniform probability.

Using this definition, we can now state our main result when the outside option is non-binding.

Theorem 1. If 𝜂 < 𝑟, then there is a sequence of uniformly obfuscating algorithms that is
asymptotically optimal. Along this sequence, the firm with the highest match score wins the
sponsored position.

It is important to note that uniform obfuscation serves the dual role of maximizing revenue
from the sponsored slot (by increasing the probability consumers buy from that slot and
thereby increasing the bids of firms) as well as the revenue from sales commissions (by
increasing the probability the consumer buys from an organic slot, given it does not buy
from the sponsored slot). This second, but not the first, role of obfuscation extends Nocke
and Rey (2023) who show that a multi-product firm may want to use obfuscation of product
orderings to maximize profits. Note, however, that the settings are very different in that, in
their setting, consumer learning is restricted in the sense that as all products have the same
value, and thus, a consumer never continues searching if a match occurs.

In our setting, consumer learning is important because a ranking algorithm introduces
interdependence between the consumer’s conditional match values across firms: consumers
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may use observed match values to make inferences about the match values with firms they
have not yet inspected. The ability to influence the consumer’s learning over the course of
search introduces strategic tension in the platform’s objective of designing the algorithm.
On one hand, the sponsored firm’s initial demand can be increased by providing a less
informative ranking of the organic positions because this reduces the consumer’s expected
payoff from continuing search beyond the sponsored firm. On the other hand, supplying
some information in the organic ranking can bolster the sponsored firm’s return demand as
observing a low match value at an organic firm makes the consumer pessimistic about the
remaining organic firms, making returning back to the sponsored firm more attractive.

In addition, for certain realizations of match scores, the platform may prefer not to put the
firm with the highest match score in the sponsored position as the consumer may become
more optimistic about finding an even better match value (and thus continues to search) if
the platform puts the highest match score first. Hiding information from the consumer may
then increase the probability that the consumer immediately buys from the sponsored slot.

Theorem 1 provides a clear picture of two properties of optimal algorithms by focusing on
the many real-world applications where the number of potentially relevant firms for a search
query is large. This allows us to adapt the the property of mixing (Mossel, Mueller-Frank,
Sly, and Tamuz, 2020, Lemma 1) to establish our main results. In order to develop the
intuition for why the result holds for large 𝑛, we start by presenting two examples showing
that, due to learning effects, our main result may fail to hold with a small number of firms.
HERE DISCUSSION (and maybe footnote) OF 𝑞 = 0 but can also be small in examples
The first example shows that uniform obfuscation may fail to be optimal, while the second
example shows that the platform may not want to put the firm with the best match score in
the sponsored position. The second example also illustrates that, with a small number of
firms, if the platform always puts the firm with the highest match score in the sponsored
position, consumers may have non-monotonic reservation values: they continue to search
for intermediate match values, but stop searching for high or low match values.

Example 1 Suppose there are three firms. The consumer’s match value is either low ℓ,
medium 𝑚, or high ℎ and a product is only worth purchasing if it provides at least a medium
value. A firm’s match score is 𝐿 when the value is low and 𝐻 otherwise, i.e., the platform can
distinguish firms with low match values from other firms, but cannot distinguish firms with
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medium and high match values.15 Suppose the platform employs the following algorithm.
The firm with the highest bid is placed in the sponsored position, ties are broken in favor of
the firm with the highest match score and further ties are broken with equal probability. For
the two non-sponsored firms, if only one of them has a high score it is placed in the second
position with probability 𝛼 ≥ 1

2 , otherwise they are arranged in the organic positions with
equal probability. Uniform obfuscation is a special case where 𝛼 = 1

2 .

The consumer’s optimal search proceeds in the following manner. If the sponsored firm’s
value is high ℎ, the consumer buys it immediately since there is no advantage from continuing.
If instead the sponsored firm’s value is low ℓ, then given the algorithm, the consumer learns
that all remaining firms must likewise have low match values and so the consumer exits the
market. If, however, the consumer observes 𝑚 in the sponsored slot, then it might still be
prudent to continue searching as some remaining firm might deliver a higher match value.

In Online Appendix S.1, we show that there are values such that (i) if 𝛼 = 1
2 , the consumer

continues searching when observing 𝑚 in the first and second search, but halts otherwise,
and that (ii) for some values of 𝛼 > 1

2 the consumer inspects the second slot if the sponsored
position provides a medium match value, but does not find it optimal to search further. Note
that by providing some information in the organic slots, the non-uniformly obfuscating
algorithm makes inspecting the second firm more desirable, but increases a sponsored firm’s
return demand as consumers do not inspect the third firm. In addition, it also affects the
expected profits of a non-sponsored slot. Online Appendix S.1 shows that firms are willing
to bid more for the sponsored slot with an algorithm that is not uniformly obfuscating, i.e.,
𝛼 > 1

2 , because the effect on return demand dominates the other effects.

Example 2 As in the example above, suppose that there are three distinct match values
𝑙, 𝑚, ℎ and that the platform cannot distinguish medium and high match values, but perfectly
recognizes a low value match. Contrary to example 1, every product is, in principle, worth
buying (that is, better than any outside option). Also, assume there are four firms.

Consider the following two algorithms. The first one always assigns the firm with the highest
match score to the sponsored position and uniformly obfuscates the organic positions. The
second algorithm does almost always the same except in the event that two match scores are
15This example departs from the assumptions of our model in that the distribution of match values conditional on the match scores do

not share the same support. This is insignificant to the particular example since we could modify the distributions to P( {ℓ } |𝐿) =
P( {𝑚, ℎ} |𝐻) = 1 − 𝜀 so that the conclusion continues to hold for 𝜀 > 0 sufficiently small.
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𝐿 and two are 𝐻. In that case the platform puts a firm with the lowest match score in the
sponsored position and uniformly obfuscates the organic positions.

In Online Appendix S.2 we show that there are parameters under which the second algorithm
gives the winning firm a higher probability of selling. In particular, with the first algorithm
the consumer buys immediately from the sponsored position whenever it contains an ℎ or
𝑙 value, but they continue to search if they see an 𝑚 value. On the other hand, with the
second algorithm the consumer buys immediately from the sponsored position whatever its
match value. Since the second algorithm ensures that the consumer always buys from the
sponsored slot and never buys from an organic position, it is clear that the platform gets its
highest possible profit as a result of firms bidding maximally for the sponsored slot.

The main idea exploited in Online Appendix S.2 is that under the first algorithm when
consumers find an 𝑙 in the sponsored slot, they know that all remaining slots must contain 𝑙
and therefore they buy immediately. The second algorithm exploits this pessimism: even
though the consumer knows that after observing an 𝑙 in the sponsored slot the realized
match scores may now be either {𝐿, 𝐿, 𝐿, 𝐿} or {𝐿, 𝐿, 𝐻, 𝐻}, the consumer may still buy
immediately if the ex ante probability of 𝐿 is sufficiently high.16 The effect of this is that
when the consumer observes an 𝑚 on the first search, under the second algorithm they are
more pessimistic about finding an ℎ when continuing to search than under the first algorithm.
Thus, they may stop searching under the second algorithm, but not under the first.

Proof Outline We are now ready to convey the main elements of the proof of Theorem
1. A key idea in the argument is that when there are many firms, then for any possible
algorithm, when the consumer finds that their match value with the sponsored firm lies
below 𝑟 , they almost certainly have a better option for how to proceed with their search than
to buy the sponsored firm’s product. The tool we use to formalize this idea is the fact that
independently and identically distributed (IID) random variables have the property of mixing
(Mossel, Mueller-Frank, Sly, and Tamuz, 2020, Lemma 1). Intuitively, mixing means that
any event defined on the same probability space as a sequence of IID random variables can
only be strongly related to a finite number of them.

Lemma 1 (Mixing Principle for Consumer Search). Consider a collection of events {𝐸𝑛}𝑛∈N
in Ω such that P(𝐸𝑛) > 𝛼 for some 𝛼 > 0. For every 𝑣 ∈ R and 𝛿 > 0, there exists an 𝑛∗ ∈ N
16To some extent, this is reminiscent of Bayesian Persuasion as the platform pools good and bad events subject to the constraint that the

consumer stops searching immediately.
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such that, if 𝑛 ≥ 𝑛∗ then |𝑑𝑖 (𝑣, 𝜇) − 𝑑𝑖 (𝑣, 𝜇(·|𝐸𝑛)) | < 𝛿 for some firm 𝑖 ≤ 𝑛.

The lemma implies that if the number of firms is large, then for a given event, there always
exists a firm whose expected option value conditional on the search histories induced by
the event is arbitrarily close to its unconditional option value. The Mixing Principle for
Consumer Search follows from the fact that the difference between the probability of an
event 𝐻 conditional on another event 𝐸 and the unconditional probability of 𝐻 cannot be too
large if the probability of 𝐸 is bounded away from zero. To understand the logic underlying
this claim, consider a game in which a player flips 1000 coins and wins if and only if at least
𝑥 ∈ {500, ..., 999, 1000} coins turn up heads. Let 𝐸 (𝑥) be the event that the player wins,
and let P(𝐻) denote the probability that a randomly chosen coin has turned up heads. Then,
for P(𝐻 |𝐸 (𝑥)) − P(𝐻) to become large, we must choose a high value of 𝑥. But selecting
a higher 𝑥 makes 𝐸 (𝑥) very unlikely, demonstrating a fundamental trade-off between the
likelihood of an event and the effect it can have on the prior. Consequently, an event that
occurs with a positive probability bounded away from zero cannot be arbitrarily informative
and, thus, cannot shift the conditional probability too much away from the prior.

Using the Mixing Principle for Consumer Search, we derive two important implications.
First, we develop an upper bound on platform profits attainable from any algorithm (Lemma
B.1). Second, we show how uniform obfuscation, if the firm with the highest match score
wins the sponsored position, achieves this upper bound (Lemma B.2). The examples above
illustrate that the platform can leverage a consumer’s learning to its own advantage when 𝑛
is small. The Mixing Principle for Consumer Search implies this is not true when 𝑛 is large.

For the intuition of the first claim, we argue that the probability the consumer buys from the
sponsored firm when it offers a match value less than 𝑟 vanishes as the number 𝑛 of firms
grows large. To see why this is true, take any 𝜖 > 0 and let 𝐸𝑛 be the event in which the
consumer buys from the sponsored firm and it delivers a match value that is less than 𝑟 − 𝜖
when there are 𝑛 firms. If the probability of this event fails to vanish as the number of firms
grows large, then by the Mixing Principle there will eventually be some position with an
arbitrarily high probability of containing a firm 𝑖 ≤ 𝑛 for whom 𝑑𝑖 (𝑟 − 𝜖, 𝜇(·|𝐸𝑛)) > 0. But
this implies a contradiction as there will eventually be a position with an option value that is,
in expectation, positive over the event 𝐸𝑛. Thus, the limiting demand facing a sponsored
firm with match score 𝜃𝑖 cannot be larger than the probability that its match value exceeds 𝑟 ,
which is equal to 1−𝐺 (𝑟 |𝜃𝑖), which is increasing in 𝜃𝑖. Consequently, because the platform’s
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profit cannot exceed the amount accrued by the sponsored firm and the match scores are
bounded by 𝜃, an upper bound on platform profit is 𝑝(1 − 𝐺 (𝑟 |𝜃)).

For the second claim, we next argue that when 𝑛 grows large, an algorithm for which the
firm with the highest match score wins the sponsored position and uniformly obfuscates the
organic slots gives the firm in the sponsored slot a demand that is arbitrary close to this upper
bound. The algorithm has two features that are important. First, by allocating the sponsored
slot to the firm with the highest match score, the platform makes it attractive for consumers to
start their search at the sponsored slot. When 𝑛 grows large, there is almost surely a firm that
has a match score that is arbitrarily close to 𝜃. Second, even for large 𝑛, the platform could
in principle choose a ranking that allows consumers to learn, but by uniformly obfuscating
the organic slots, it effectuates that consumers do not learn anything from observing their
match value at the sponsored slot and they expect a randomly selected firm to have a match
value close to 𝑟. This makes it least attractive for consumers to continue searching beyond
the sponsored slot and from the above we know that the return demand is arbitrarily small
for large 𝑛. Thus, it is not the case that when 𝑛 grows large consumers cannot learn from the
platform’s ranking, but the platform cannot gain from rankings that do allow consumers to
infer information about match values at firms that are not inspected yet. Together, the above
two features ensure that a firm’s demand in the sponsored slot approaches 1 − 𝐺 (𝑟 |𝜃).

The last step of the proof argues that for large 𝑛 there exists an equilibrium where firms
find it optimal to bid an amount in the bidding stage that is close to 𝑝(1 − 𝑞) (1 − 𝐺 (𝑟 |𝜃))
realizing an expected profit for the platform close to the maximal attainable profits. This
step has two parts. We intuitively discuss here the argument where firms do not have private
information on which to condition their bid so that in a symmetric equilibrium the platform
receives identical bids from all firms. Section 3.1 shows that the result actually holds for
an arbitrary distribution of private information about the consumer between firms and the
platform. So, let 𝑎̂𝑛 be the algorithm which: (1) assigns the sponsored position to the firm
with the highest bid, breaking ties in favor of a firm with the highest score and remaining
ties with uniform probability; (2) assign those firms that do not win the auction to organic
positions with uniform probability. Specify the payment rule 𝜌̂𝑖𝑛 (b) to be equivalent to a
second-price auction, equal to the highest bid among all firms 𝑗 ≤ 𝑛 excluding 𝑖.

Let us provide the necessary conditions for there to be a symmetric equilibrium in which all
firms submit the same bid 𝛽𝑛 ∈ R. Given the above algorithm, payment rule, and strategy

16



profile, let 𝜋(𝑚, 𝑛) be a firm’s expected profit (excluding the bid paid to the platform) given
that it is placed in the 𝑚th position in the game with 𝑛 firms. A firm’s expected profit is then

1
𝑛
(𝜋(1, 𝑛) − 𝛽𝑛) +

𝑛∑︁
𝑚=2

1
𝑛
𝜋(𝑚, 𝑛).

Supposing all other firms continue to submit 𝛽𝑛, let 𝜋̃(𝑚, 𝑛) for 𝑚 ≥ 2 denote a firm’s
expected profit from submitting a bid strictly below 𝛽𝑛 given that it is placed in the 𝑚th
position in the game with 𝑛 firms. A firm’s expected payoff from such a “downward
deviation" is thus

𝑛∑︁
𝑚=2

1
𝑛 − 1

𝜋̃(𝑚, 𝑛).

Finally, supposing all other firms submit 𝛽𝑛, let 𝜋̂(1, 𝑛) denote a firm’s expected profit
(excluding payment to the platform) from submitting a bid strictly higher than 𝛽𝑛 and winning
the sponsored position. The expected payoff from such an “upward deviation" is

𝜋̂(1, 𝑛) − 𝛽𝑛.

Combining these conditions, placing an identical bid of 𝛽𝑛 is a best reply for all firms if and
only if

𝑛

𝑛 − 1
𝜋̂(1, 𝑛) − 1

𝑛 − 1

𝑛∑︁
𝑚=1

𝜋(𝑚, 𝑛) ≤ 𝛽𝑛 ≤
𝑛∑︁

𝑚=1
𝜋(𝑚, 𝑛) − 𝑛

𝑛 − 1

𝑛∑︁
𝑚=2

𝜋̃(𝑚, 𝑛). (2)

The remainder of the argument shows that for large 𝑛 the LHS of this expression approaches
𝑝(1 − 𝑞) (1 − 𝐺 (𝑟)), while the RHS approaches 𝑝(1 − 𝑞) (1 − 𝐺 (𝑟 |𝜃)). Thus, for large 𝑛
there is a continuum of equilibrium bids. By choosing a reserve price that is close to the
highest equilibrium bid, the platform can easily resolve this equilibrium multiplicity to its
own advantage achieving a profit close to 𝑝(1 − 𝑞) (1 − 𝐺 (𝑟 |𝜃)).

2.2 Binding Outside Option

We now consider the case in which the consumer’s outside option is binding, i.e., the outside
option has a value 𝜂 > 𝑟 . If the platform continues to assign the firm with the highest match
score to the sponsored position but otherwise uniformly obfuscates firms across organic
positions, the consumer inspects the sponsored position, but never inspects an organic
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one. Therefore, even though such an obfuscating algorithm is asymptotically optimal in
maximizing the sponsored position auction revenue as 𝑛 grows large, the platform only earns
commission when the consumer buys from the firm in the sponsored slot. Below we show
that, in this case, the platform can do better than obfuscating over the entire set of firms.

Below we allow the platform to divide its 𝑛 − 1 organic positions into two sets, so-called
premium positions and the remaining ones.17 Consider premium positions for example as
those located on the first page or otherwise endorsed by the platform.18 This allows us
to formally define an algorithm that obfuscates firms with the best match scores across
premium positions:

Definition 3. An algorithm 𝑎 ∈ A𝑛 uniformly obfuscates firms with higher match scores
across premium positions if it assigns each of the firms that lose the auction—and whose
match scores exceeds a value 𝜙—to each of the premium positions with uniform probability.

A search platform, leveraging big data techniques, has a fairly accurate idea of the match
value distribution of products and the consumer’s outside option. Based on this information,
the platform commits to an algorithm that assigns the sponsored position to the firm with the
highest match score and randomly assigns all firms that lose the auction and whose match
score exceeds a value 𝜙 to premium positions.

When the consumer then types in a keyword, the platform learns the consumer’s match
scores and executes the algorithm. Theorem 2 below establishes that there is a sequence of
cutoff values (𝜙𝑛)𝑛∈N such that an algorithm that assigns the likely best matches to premium
positions is approximately optimal for the platform when the number of firms is large.

Theorem 2. If 𝜂 > 𝑟 , there is a sequence of algorithms that uniformly obfuscate firms with
higher match scores across premium positions that is asymptotically optimal. Along this
sequence, the firm with the highest match score wins the sponsored position.

The main idea behind this result is as follows. Let 𝑟 (𝜙) be the function satisfying

𝑠 = E [max{𝑣𝑖 − 𝑟 (𝜙), 0}|𝜃𝑖 ≥ 𝜙]

⇔ 𝑠 =

∫ 𝑣̄

𝑟 (𝜙)
(1 − 𝐺 (𝑣 |𝜃 ≥ 𝜙))𝑑𝑣.

(3)

17That is, 𝑎 : R𝑛+ × [
¯
𝜃, 𝜃 ]𝑛 × 𝑍 → 𝑋 × {0, 1, . . . , 𝑛 − 1} where 𝑎 (b, 𝜽, 𝑧) = (𝑥, 𝑛̃) implies that the algorithm selects ranking 𝑥 and

demarcates the first 𝑛̃ organic positions as premium positions.
18Note that in Section 2.1—as will become clear below—the platform asymptotically weakly prefers not to define premium positions.
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In words, absent additional information, the consumer is indifferent between searching a
premium position and a product with value 𝑟 (𝜙) if the cutoff match score for premium
positions is 𝜙.19 Note that from an ex ante perspective, the consumer inspects a premium
position only if 𝜙 > 𝜁 with 𝜁 = 𝑟−1(𝜂). Moreover, observe that—conditional on 𝜃 > 𝜙—
draws from premium positions are independent for the consumer.

With an algorithm that assigns the sponsored position to a firm with the highest match score,
however, the consumer inspects the sponsored position first, thereby learning about the
match scores of firms in premium positions. With a small number of firms, a particularly
low match value at the sponsored position may induce a consumer to become so pessimistic
that they prefer their outside option 𝜂 over inspecting any premium position, even if 𝜙 > 𝜁 .

If the number of firms to be ranked is large, however, the Mixing Principle of Consumer
Search not only allows us to define an upper bound for platform profits,

(1 − 𝑞)𝑝(1 − 𝐺 (𝜂 |𝜃)) + 𝑝𝑞,

but also establishes that the effect of learning from the sponsored slot vanishes. No matter
how low the match value of the firm in the sponsored position the consumer observes, it
will not sway them enough to choose the outside option 𝜂 over inspecting another premium
position. In the proof of Theorem 2 we show that one sequence of premium cutoffs that
establishes asymptotic optimality is given by 𝜙𝑛 = 𝜁 + 1

𝑛
.

As the number of firms grows large, i.e, 𝑛 → ∞, 𝑟 (𝜙𝑛) converges from above to 𝑟 (𝜁) = 𝜂.
Thus, on the one hand—invoking the logic derived in the proof of Theorem 1—the revenue
accrued from the auction for the sponsored position is maximized. On the other hand,
learning about firms in premium positions vanishes, and there is a premium position with
a positive option value relative to the outside option 𝜂 with arbitrarily high probability.
Therefore, the consumer prefers inspecting any premium position over their outside option.
It follows that an algorithm uniformly obfuscating a set of firms across premium positions is
approximately optimal when the number of firms is large.

Intuitively, we have shown that our main result generalizes when the platform faces
competition or when substitute products are readily available. The platform exhibits an
incentive to assign the sponsored position to the firm with the highest match score, while it
19We assume throughout that 𝜂 < 𝑟 (𝜃) .
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wants to provide the consumer with as little information as possible through organic search
results, i.e., obfuscate them to the maximal extent possible subject to the constraint that the
consumer prefers inspecting premium positions over leaving the platform altogether and
taking their business elsewhere. As such, premium positions are a viable instrument for
platforms to address threats such as competition and substitute products.

2.3 Improved Platform Information

Now that we better understand for which purposes the platform may (not) use the information
it possesses, we can also answer the question how the market is affected by the platform
having more accurate information. Consider an improvement in the quality of the platform’s
information in the sense of Lehmann (1988). That is, if 𝐹 (𝜃𝑖 |𝑣𝑖) is the platform’s initial
score distribution, then the platform has better information if its new score distribution
𝐹̃ (𝜃𝑖 |𝑣𝑖) is such that

𝐹̃−1 (𝐹 (𝜃𝑖 |𝑣𝑖) |𝑣𝑖)

is nondecreasing in 𝑣𝑖 for all 𝜃𝑖.20

The next proposition argues that both the platform and consumers are better off if the platform
has better information.

Proposition 1. When there are many firms, improving the quality of the platform’s information
leads to higher platform profit and consumer surplus under the algorithms specified in
Theorems 1 and 2.

When the platform has the ability to design its algorithm with more accurate information
about consumers’ match values, it can create a sponsored position that is more valuable
for firms, and extract more revenue from the sponsored search auction. Moreover, better
information can also lead to more revenue through commission fees as the platform has
more latitude to keep consumers from exiting the platform by designing more attractive
premium positions.

Proposition 1 is consistent with the interpretation of search platforms being critical gatekeep-
ers in online markets. The platform sells “preferred access” to consumers to firms, which is
20Dewatripont et al. (1999) and Persico (2000) discuss economic applications of Lehmann information.
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more valuable to a firm if the likelihood that the consumer likes the firm’s product is higher.
This is why more accurate information increases the platform’s profits.

Interestingly, consumers are also better off as they are more likely to find a product they will
like enough so that they will not continue searching. They benefit from improved information
both through a higher expected match value conditional on buying and through a reduced
expected total search cost. Firms may be slightly worse off as the ones with an organic slots
are less likely to sell (even though for large 𝑛, their profits were anyway already small to
begin with) and the firm in the sponsored slot has paid so much more that it is indifferent
between winning and losing.

3 Generalizations

In this Section we show that our main result continues to hold when we take into account
that (i) firms may also have some information regarding consumers’ match values, or (ii)
firms charge different prices.

3.1 Privately Informed Firms

We have so far assumed that only the platform has access to relevant information regarding
consumer preferences, and firms do not possess such information. We think this is relevant
in many instances where firms do not have the relevant technology in place to digest large
amounts of information. However, there are other instances where firms also do have
relevant information in addition to the platform, perhaps from other sales channels. Here,
we therefore consider the situation where firms also have some information about how well
their product fits a particular search query.

To model those instances, suppose that in addition to the platform receiving a match score
𝜃𝑖 ∈ [

¯
𝜃, 𝜃], each firm receives a private signal 𝑡𝑖 ∈ [

¯
𝑡, 𝑡] and that the consumer’s match value

with firm 𝑖 is drawn from a distribution 𝐺 (𝑣𝑖 |𝑡𝑖 + 𝜃𝑖). The match scores 𝑡𝑖 are independently
and identically distributed (IID) across firms according to a compactly supported, atomless
distribution 𝐹̂ (𝑡𝑖). Denoting 𝑦𝑖 = 𝑡𝑖 + 𝜃𝑖, we assume, similar to the main model, that 𝐺 (𝑣𝑖 |𝑦′𝑖)
has likelihood ratio dominance over 𝐺 (𝑣𝑖 |𝑦𝑖) whenever 𝑦′

𝑖
≥ 𝑦𝑖.
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Define a firm’s adjusted bid 𝜓(𝑏𝑖, 𝜃𝑖) to be a smooth and strictly increasing function of a
firm’s bid on [0, 𝑝] and score on [

¯
𝜃, 𝜃]. Consider an algorithm which awards the sponsored

slot to the firm with the highest adjusted bid and uniformly and randomly assigns all
other firms to organic positions. Normalize the smallest adjusted bid to 𝜓(0,

¯
𝜃) = 0. We

suppose that for all bids 𝑏𝑖 > 𝑝 the adjusted score is the same as if they had bid zero
𝜓(𝑏𝑖, 𝜃𝑖) = 𝜓(0, 𝜃𝑖). Specify the payment rule, 𝜌𝑛, so that the firm that wins the auction
pays the value of its bid.21 As bidding higher than 𝑝 is dominated by bidding zero, it is
without loss of generality to restrict the firms’ strategy space to bids in [0, 𝑝]. Because the
distribution of 𝜃𝑖 is atomless, the probability of a tie is zero. Thus, unlike the main model,
each firm’s expected profit is continuous in the bids on [0, 𝑝].

Denote 𝑏̄ ≡ (1− 𝑞)𝑝(1−𝐺 (𝑟 |𝑡 + 𝜃)) as the expected profit a firm with private signal 𝑡 and a
platform’s signal 𝜃 would make if the consumer would visit that firm at their first search and
decide to engage in optimal sequential search afterwards.

We can then state the following proposition, which is the analogue of our main result for the
case where firms also have some private information.

Proposition 2. Suppose firms have private information. There is a sequence of algorithms
that uniformly obfuscate firms with higher match scores across premium positions that is
asymptotically optimal. Along the sequence the sponsored firm’s match value distribution
converges to 𝐺

(
𝑣 |𝜃 + 𝑡

)
and the platform’s profit converges to a mass point at 𝑏̄.

It is not difficult to see that if 𝑛 is large and the combined information of the winning firm
and the platform about the match score is the same as the platform’s information in the main
model, the platform earns the same profits, whether or not the firms have private information.
The reason is that if firms do not have information as in the main model, they know that
the platform uses match scores to allocate the sponsored slots and take this already into
account when making the bid. If, on the other hand, firms have some private information in
the form of a match score they realize that the firm with the highest combined match score
𝑡 + 𝜃 will win the auction and that as far as the allocation of organic slots is concerned the
platform ignores all information. Thus, for a given total match score of the winner, sales
will be independent of whether firms have private information.
21Note that this marks a minor difference with the main result where we considered a second-price auction. Second-price auctions are a

bit more difficult to handle as when firms are ranked according to their adjusted bid, the second-highest adjusted bid may have a bid that
is higher than the highest-ranked adjusted bid. When 𝑛 is large, this difference becomes negligible, however, as the second-highest
(adjusted) bid is arbitrarily close to the highest (adjusted) bid.
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3.2 Heterogeneous Prices

The main model not only stipulates that prices are exogenously determined, but also that
they are the same across firms. For an analysis of the welfare consequences of sponsored
positions it is important to acknowledge, however, that different firms are likely to have
different prices. In this Section, we accommodate this fact. To keep the analysis tractable,
we assume there is a finite, but rich set of prices charged by different firms. Moreover, and
in line with considering that the sales through a specific search query are a relatively small
fraction of the overall sales of a firm, prices remain determined independently of a search
query.22 Allowing for different firms charging different prices, we introduce a finite set of
prices P = {𝑝1, 𝑝2, ..., 𝑝𝐾}.23 Without loss of generality, assume that 𝑝1 < 𝑝2 < ... < 𝑝𝐾 .

We denote the distribution over P by 𝐻 with probability mass function ℎ. For this setting,
we redefine the ex ante reservation value 𝑟 as the unique solution to∑︁

𝑝∈P
ℎ(𝑝)

(∫ 𝑣̄

𝑟+𝑝
(𝑣 − 𝑝 − 𝑟) d𝐺 (𝑣)

)
= 𝑠. (4)

Observe that the above definition of 𝑟 differs slightly from the one in the previous Section in
so far as the reservation value of a randomly chosen firm accounts for the (distribution of)
price(s) a consumer encounters at the firm. For consistency, we let 𝜂 denote the value of the
outside option net of any price the consumer may have to pay for it. Defining 𝛾 := max(𝜂, 𝑟),
if the platform uniformly obfuscates and 𝑛 → ∞, then a consumer whose best searched firm
so far has a match value 𝑣 at price 𝑝 continues to search (randomly) if and only if 𝑣 − 𝑝 < 𝛾.

Finally, to focus on the main issues at hand, we introduce two simplifying assumptions. First,∫ 𝑣̄

𝛾+𝑝𝐾

(
𝑣 − 𝑝𝐾 − 𝛾

)
d𝐺 (𝑣 |𝜃) ≥ 𝑠. (5)

If (5) holds, there are no firms with prices so high that a consumer would not want to pay
the search cost 𝑠 to inspect them, even if she knew that the firm’s match score is 𝜃. Second,
22Janssen and Williams (2022) consider a model where a social influencer recommends followers to inspect a certain product. They

consider that firms may change their prices depending on whether or not they are recommended. Their analysis suggests that the
conclusions we derive here could be extended to situations where firms’ prices are endogenous. In particular, a firm that wins a sponsored
slot (as the recommended firm in Janssen and Williams (2022)) will optimally adjust its price (upwards) in response to the favorable
news of being awarded the sponsored slot. This will further increase the willingness to bid to get it and boost the platform’s profits.

23We implicitly assume here that the reason why prices vary is orthogonal to match values. We could further micro-found this assumption
by introducing heterogeneous marginal costs. The inclusion of heterogeneous costs, however, would not alter any of the qualitative
predictions in this Section. To simplify the exposition of the analysis, we thus continue to assume that marginal costs are zero.
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ensuring that the platform benefits from offering a sponsored slot

𝑝𝐾𝑞 < max
𝑝∈P

𝑝(1 − 𝐺 (𝛾 + 𝑝 |𝜃)). (6)

The assumption trivially holds for any 𝑞 < 1 if all firms charge the same price as in the main
model.

Under heterogeneous prices, the following two implications are reminiscent of our previous
analysis. First, by the Mixing Principle of Consumer Search, a consumer will not purchase
from the sponsored firm if 𝑣𝑠 − 𝑝𝑠 < 𝛾 for 𝑛 large enough. Second, if the platform wants the
consumer to inspect particular slots, then those slots must have a reservation value that is
weakly higher than 𝛾 for large 𝑛.

Therefore, the following algorithm allows the platform to achieve asymptotically maximum
profits. Suppose the platform runs an adjusted second-price auction and places the firm with
the highest bid in the sponsored slot. For large enough 𝑛, the price of firms with the highest
willingness to bid for the sponsored slot (and thus the price of a firm that wins the sponsored
slot) equals 𝑝∗ ∈ arg max𝑝∈P 𝑝

(
1 − 𝐺 (𝛾 + 𝑝 |𝜃)

)
. Organic slots are divided into premium

and non-premium ones. Importantly, the platform now uses premium positions regardless of
the value of the outside option because it wants the consumer to inspect products with the
highest prices to maximize commission fees. To incentivize the consumer to inspect firms in
premium positions despite the higher prices, the algorithm requires a firm’s match score to
exceed a minimum threshold. Furthermore, the platform uniformly obfuscates these firms
across premium positions to keep the consumer searching. We can thus invoke Definition 2
of uniform obfuscation across premium positions.

Proposition 3. Given (5) and (6), there is a sequence of algorithms that uniformly obfuscate
firms with high match scores across premium positions that is asymptotically optimal. Along
this sequence, the expected match score of the firm that wins the sponsored position converges
to the maximal match score 𝜃, and the prices of firms in the premium positions to 𝑝𝐾 .

Thus, obfuscation remains an important tool for the platform even if firms have different
prices. Additionally, firms with a match score that, at least for 𝑛→ ∞, is arbitrarily close to
the highest match score have a chance of winning the sponsored slot.

It remains to be understood how the platform can extract almost the entire rent from the
winning firm in this case. The relevant intuition is reminiscent of Theorem 1. As 𝑛→ ∞,
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the bids of all firms converge to their expected profit when occupying the sponsored slot as
for any finite 𝑛 there is a positive, although vanishing, probability that they win the auction
and the probability there is another firm with the same price approaches one. Thus, the
auction for the sponsored slot is almost surely decided by the match score as a tiebreaker
among firms with price 𝑝∗. Since these firms earn equal profits, the adjusted-second price
auction underlying Theorem 1 remains asymptotically optimal.

Since the match scores of firms in premium positions and the sponsored approaches the
maximal match score, the next result follows immediately from the last part of Proposition 3.

Corollary 1. Under the asymptotically optimal algorithm, the price of the sponsored firm is
lower than the price of a firm in a premium position.

When assigning firms to premium positions, the platform only cares about the probability
the consumer buys from any of these firms. This probability converges to one as long as the
probability that the consumer buys at a particular firm in a premium position is positive. In
contrast, when deciding which firm to assign the sponsored slot to it is a single firm’s profits
that the platform seeks to maximize, because this is what firms are willing to bid to obtain
the slot. Therefore, the probability of a single firm generating a sale cannot be too small,
implying a lower price (𝑝∗ < 𝑝𝐾) for the firm winning the sponsored slot.

4 Consumer Surplus

This section discusses the important policy question of whether consumers are better or
worse off if search platforms (stop) employ(ing) sponsored positions. Clearly, if in the
absence of sponsored positions the platform’s and consumers’ interests are aligned and the
platform maximizes consumer surplus (which may be what Brin and Page had in mind when
they wrote the phrase quoted in the Introduction) consumers are better off. Asymptotically24

the platform chooses a perfect ranking, i.e., a ranking where firms with higher match score
are ranked above firms with lower match scores.

Most platforms without sponsored slots earn, however, commission fees when a consumer
buys from a firm on their website. Using the Mixing Principle for Consumer Search in
Lemma 1 it follows that to maximize commission fees the platform continues to have an
24An example where this is not the case for small 𝑛 is available upon request.
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incentive to uniformly obfuscate, potentially only over a premium set of firms. Therefore,
with a sponsored slot, the overall ranking is more informative as this slot contains a firm with
a higher match score. This implies that introducing a sponsored position benefits consumers.

Corollary 2. If the platform only maximizes sales commission revenue, then introducing a
sponsored position increases consumer welfare if 𝑛 is large.

Intuitively, the additional information provided to the consumer via the sponsored slot has
two effects. First, it ensures that the consumer samples the firm that is most likely to have
a high match value. This raises the expected match value of the product the consumer
eventually chooses. Second, sampling the firm with the best match score reduces the number
of slots the consumer expects to inspect, thereby lowering expected search costs.

If, in addition, firms have different prices there is a third reason why having a sponsored
position is better for consumers. As detailed in the previous section, if firms have different
prices the platform introduces premium sets to select firms with higher prices to maximize
the commission fee. In comparison, the firm in the sponsored slot has a lower price. Thus,
the sponsored slot also helps consumers to find a firm with a lower price.

5 Discussion and Conclusion

In this paper, we analyze how selling sponsored positions affects a search platform’s ranking
of products. When deciding on its ranking, the platform takes into account that consumers
are free to choose how to search. The platform faces an incentive to leverage its information
about consumers to put the firm it deems most relevant for a consumer in the sponsored
slot. This induces the consumer to inspect the sponsored slot first, increasing the sponsored
firm’s demand. There is a second reason why winning the sponsored slot is positive news to
firms as the firm updates its beliefs about its match value. Obfuscation of organic slots also
plays a crucial role in creating rankings, since it increases the firms’ incentive to acquire the
sponsored position by lowering the consumer’s benefit of searching organic positions. As a
result, the platform increases revenue by introducing sponsored positions.

Importantly, these findings apply when the number of search results (firms) is sufficiently
large as is the case for many real-world search platforms. When consumers search for
products, and the number of keyword relevant firms is small, learning effects arise and the
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optimal platform rule varies with the specific details of the environment. We demonstrate the
robustness of our main result to (i) firms holding private information about the consumer’s
match value with their product, and (ii) firms quoting different prices.

Our results have important implications for consumer welfare. In particular, if in the
absence of sponsored positions, sales commissions revenue is the only source of revenue,
introducing a sponsored slot benefits consumers as it induces a strictly more informative
ranking. Moreover, when prices differ across firms the platform has an incentive to create
premium sets of organic search results with firms that charge high prices. In contrast, the
platform tends to allocate the sponsored position to a firm with a lower price, creating an
additional benefit to consumers.

This paper focuses on the incentives of search platforms how to use their large data sets
on consumer search and purchase behavior. Importantly, these incentives shape online
markets as the actions of search platforms determine how consumers search. We see several
fruitful directions for future research. One issue relates to the number of sponsored positions.
While we restrict the platform to sell a single sponsored position throughout the paper, many
real-world platforms feature multiple sponsored positions. As a result, how to optimally
allocate these slots poses an important question.

As a first step towards such an analysis, observe that the results in this paper generalize to a
platform selling a fixed number 𝑘 of sponsored positions. With exogenously given prices
the platform cannot do better than designing an algorithm that assigns the 𝑘 firms with the
highest match scores to the 𝑘 sponsored positions while obfuscating organic ones. A firm
conducting the majority of its business through a search platform, however, may set its prices
strategically taking into account its likelihood of obtaining a sponsored position. How do
the platform’s incentive to rank firms and design auctions for sponsored positions change in
response? Relatedly, it is important to understand what determines the optimal number of
sponsored positions itself.
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A Appendix: Preliminaries

To prove our asymptotic results, we consider a framework with infinitely many firms 𝑖 ∈ N in
which we embed the model with finitely many firms. Let 𝜽 = (𝜃1, 𝜃2, . . . ) ∈ Θ be the vector
of scores, v = (𝑣1, 𝑣2, . . . ) ∈ 𝑉 the vector of match values, and 𝑧 the nonatomic random
variable with support 𝑍 for randomization. We maintain the distributional assumptions
of Section 1, denote the probability measure on Θ × 𝑉 × 𝑍 by 𝜇 and probabilities and
expectations w.r.t. 𝜇 by P[·] and E[·], respectively. Letting b = (𝑏1, 𝑏2, . . . ) ∈ 𝐵 be the bid
vector and 𝑋 the set of firm permutations, the set of algorithms A is the set of functions
𝑎 : 𝐵 × Θ × 𝑍 → 𝑋 such that 𝑎(b, ·) is measurable for all b ∈ 𝐵. The set of payment rules
P is the set of measurable functions 𝜌 : 𝐵 → 𝐵 with 𝜌 = (𝜌1, 𝜌2, . . . ) such that 𝜌𝑖 (b) ≤ 𝑏𝑖.

To embed the finite firm model into this framework, let A𝑛 ⊂ A be the subset of algorithms
which only permute the first 𝑛 firms, which is to say that 𝑎(b, 𝜽 , 𝑧) = 𝑥 implies that 𝑥(𝑖) = 𝑖
for all 𝑖 ≥ 𝑛 + 1. The game with 𝑛 firms is obtained by requiring the platform to select an
algorithm in A𝑛 and restricting the consumer to only inspect the first 𝑛 positions.

We present three lemmas that characterize the consumer’s search problem in a general
environment where the consumer learns while searching. We begin by establishing an
algorithm-independent upper bound on the equilibrium expected match value of a consumer
engaging in optimal search. The reservation value for a firm known to have the highest
possible match score is the unique value 𝑟∗ that satisfies 𝑑𝑖 (𝑟∗, 𝜇(·|𝜃𝑖 = 𝜃)) = 0, where
𝑑𝑖 (𝑣, 𝜇) is defined in (1).

Lemma A.1. In every equilibrium of the game with 𝑛 firms, the expected match value
acquired by the consumer who has made a purchase after searching 𝑚 firms is less than
𝑢∗ ≡ E[𝑣𝑖 |𝜃𝑖 = 𝜃, 𝑣𝑖 ≥ 𝑟∗], for all 𝑚 ≤ 𝑛.

Proof. We first claim that the consumer halts their search and buys from a firm upon
inspecting its good and finding a match value above 𝑟∗. Upon inspecting a single firm, the
expected utility from continuing to search depends on the consumer’s beliefs about the match
scores of the remaining firms. Informing the consumer precisely of the remaining firms’
match scores yields a Blackwell improvement and thus must weakly increase the expected
utility from continued search. Also, setting the remaining firms’ match scores to each equal
the largest possible score 𝜃 weakly increases the expected utility from continued search. In
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this case, it is optimal to follow Weitzman’s rule and thus the consumer will halt their search
and buy from the first visited firm when its match value exceeds 𝑟∗. Furthermore, if the
match values uncovered at the first 𝑚− 1 visited firms are below 𝑟∗ and the consumer decides
to visit an 𝑚th firm, then this same argument provides that the consumer will immediately
buy from this 𝑚th firm whenever its value is above 𝑟∗. Thus, the claim inductively follows.

Suppose the consumer buys the good sold by firm 𝑖 when its match score is 𝜃𝑖 and the
consumer’s expected utility from choosing optimally among the set of continuation strategies
that exclude buying immediately from firm 𝑖 is 𝑤. Then the consumer’s expected match
value in this event is E[𝑣𝑖 |𝜃𝑖, 𝑣𝑖 ≥ 𝑤]. Due to the fact that this expectation is increasing in 𝑤
and 𝜃𝑖 as well our previous arguments ensuring that 𝑤 ≤ 𝑟∗, the expression is bounded above
by 𝑢∗ ≡ E[𝑣𝑖 |𝜃𝑖 = 𝜃, 𝑣𝑖 ≥ 𝑟∗]. Thus 𝑢∗ < ∞ serves as an upper bound for the expected match
value acquired by the consumer and is independent of the algorithm, equilibrium strategies,
number of firms inspected by the consumer, and number of firms in the market. □

This argument also bounds the probability a consumer engages in a lengthy search because
if the search lasts too long, the consumer’s expected payoff must be negative.

Lemma A.2. In every equilibrium of the game and at every decision node for the consumer,
for each 𝜀 > 0 there exists an 𝑚 ∈ N such that the probability that a consumer searches 𝑚
or more additional firms is less than 𝜀.

Proof. Consider a decision node for the consumer in an equilibrium of the game and let
ℎ denote the consumer’s information set. Let 𝑀 denote the random variable equal to the
number of additional firms inspected by a consumer. From Lemma A.1, a consumer’s
expected match value given that they search 𝑚′ more firms is less than 𝑢∗ for all 𝑚′ ∈ N.
Hence, a consumer’s expected utility is bounded above by∑︁

𝑚′∈N
(𝑢∗ − 𝑚′ · 𝑠)P(𝑀 = 𝑚′|ℎ).

For a given 𝑚 ∈ N, the above expression is less than or equal to

P(𝑀 ≤ 𝑚 |ℎ)𝑢∗ + P(𝑀 > 𝑚 |ℎ) (𝑢∗ − 𝑚 · 𝑠).

As the consumer’s expected utility from optimal search must be nonnegative, the above
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expression must likewise be nonnegative, implying

P(𝑀 > 𝑚 |ℎ) ≤ 𝑢∗

𝑚 · 𝑠 .

Thus, regardless of the algorithm or number of firms, if 𝑚 > 𝑢∗

𝜀·𝑠 , then the probability that
the consumer searches beyond 𝑚 more firms is less than 𝜀. □

Define an “𝑚-restricted" consumer as the consumer in our model, except that we restrict the
consumer to only be able to search at most 𝑚 positions. Let𝑈 denote the expected utility
for the “unrestricted" consumer in our model and let𝑈𝑚 denote the expected utility for the
𝑚-restricted consumer. We obtain the following bound on expected utility.

Lemma A.3. Consider a decision node at which the consumer has visited 𝑘 firms and let ℎ
denote the consumer’s information set. For a given 𝜀 > 0, let 𝑚 be large enough so that the
probability of searching 𝑚 − 𝑘 more firms is less than 𝜀. Then E[𝑈 |ℎ] ≤ E[𝑈𝑚 |ℎ] + 𝜀 · 𝑢∗.

Proof. At the specified decision node, let 𝑀 denote the random variable corresponding to
the number of additional firms searched by the consumer. The 𝑚-restricted consumer can
always mimic the unrestricted consumer’s strategy for the next 𝑚 − 𝑘 steps of search and
then exit the market whenever the unrestricted consumer would search further, implying that
E[𝑈𝑚 |ℎ] ≥ E[𝑈 |𝑀 ≤ 𝑚 − 𝑘, ℎ] P(𝑀 ≤ 𝑚 − 𝑘, ℎ). Therefore, we obtain

E[𝑈 |ℎ] = E[𝑈 |𝑀 ≤ 𝑚 − 𝑘, ℎ] P(𝑀 ≤ 𝑚 − 𝑘 |ℎ) + E[𝑈 |𝑀 > 𝑚 − 𝑘, ℎ] P(𝑀 > 𝑚 − 𝑘 |ℎ)

≤ E[𝑈𝑚 |ℎ] + E[𝑈 |𝑀 > 𝑚 − 𝑘, ℎ] P(𝑀 > 𝑚 − 𝑘 |ℎ) ≤ E[𝑈𝑚 |ℎ] + 𝜀 · 𝑢∗

completing the proof. □

A.1 Consumer Search and Mixing

A key idea of our argument is that when there are many firms, then for any possible algorithm,
when the consumer finds that their match value with the sponsored firm lies below 𝑟, they
almost certainly will continue to search rather than buy the sponsored firm’s product. The
tool we use to make this simple idea concrete is the fact that independently and identically
distributed (IID) random variables have the property of mixing (Mossel, Mueller-Frank, Sly,
and Tamuz, 2020, Lemma 1). Intuitively, mixing means that any event 𝐸 defined on the
same probability space as a sequence of IID random variables {𝑌𝑖}𝑖∈N can only be strongly
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related to a finite number of them. Formally, for every 𝜖 > 0, except for a set 𝑁 ⊂ N with
|𝑁 | < 1/𝜖2, each 𝑖 ∉ 𝑁 has the property that for every event 𝐾 only depending on 𝑌𝑖��P(𝐸 ∩ 𝐾) − P(𝐸) P(𝐾)

�� < 𝜖. (7)

Random variables satisfying (7) are called 𝜖-independent of 𝐸 . In our model, match values
{𝑣𝑖}𝑖∈N form an IID sequence of random variables and hence have the mixing property.

Proof of Lemma 1. For a given 𝑣 and neighborhood 𝑁 of 𝑑𝑖 (𝑣, 𝜇), there exists an 𝜖0 > 0
such that, if |𝜆(𝐾) − 𝜇(𝐾) | < 𝜖0 for all 𝜎(𝑣𝑖)-measurable 𝐾 ⊂ Ω, then 𝑑𝑖 (𝑣, 𝜆) ∈ 𝑁 . The
conclusion follows by noting that, to the contrary, if the conclusion does not hold, then
there is a sequence of probability measures {𝜆𝑘 }𝑘∈N satisfying |𝜆𝑘 (𝐾) − 𝜇(𝐾) | < 1/𝑘 for
all 𝜎(𝑣𝑖)-measurable 𝐾 and 𝑑𝑖 (𝑣, 𝜆𝑘 ) ∉ 𝑁 for all 𝑘 ∈ N. But this implies a contradiction
because the induced probability distribution over 𝑣𝑖, 𝜆𝑘 , weakly converges to the one over 𝑣𝑖
given by 𝜇 and thus 𝑑𝑖 (𝑣, 𝜆𝑘 ) → 𝑑𝑖 (𝑣, 𝜇) (see Aliprantis and Border, 2006, Theorem 15.3).

Let 𝜖 = 𝛼 · 𝜖0 and consider 𝑛 > 1/𝜖2. From the mixing property (Mossel et al., 2020, Lemma
1), at least one firm 𝑖 ≤ 𝑛 has a score that is 𝜖-independent of 𝐸𝑛. It follows that for any
𝜎(𝑣𝑖)-measurable event 𝐾��P(𝐾 |𝐸𝑛) − P(𝐾)�� < 𝜖

P(𝐸𝑛)
<
𝜖

𝛼
= 𝜖0

and thus 𝑑𝑖 (𝑣, 𝜇(·|𝐸𝑛)) ∈ 𝑁 . □

Recall that, during search, the consumer’s strategy involves choosing positions in the ranking
to search. Let 𝑣̂𝑖 = 𝑣̂𝑖 (𝜔, 𝑎𝑛, 𝜌𝑛, 𝜎𝑛) be the match value of the firm located in position 𝑖 and
define the function 𝑑𝑖 (𝑣, 𝜆) =

∫
Ω

max{𝑣̂𝑖 − 𝑣, 0}𝑑𝜆(𝜔) − 𝑠 which reflects the option value
of inspecting position 𝑖 when the outside option is 𝑣 given the consumer’s uncertainty over
the state 𝜆.25 Under the hypotheses of Lemma 1, the conclusion of Lemma 1 extends to
ensure the existence of an 𝑛∗∗ such that 𝑛 ≥ 𝑛∗∗ implies that |𝑑𝑖 (𝑣, 𝜇(·|𝐸𝑛)) − 𝑑𝑖 (𝑣, 𝜇) | < 𝛿
for some position 𝑖 ≤ 𝑛. This can be seen by first letting 𝜖 be the value which guarantees
|𝑑𝑖 (𝑣, 𝜇(·|𝐸𝑛)) − 𝑑𝑖 (𝑣, 𝜇)) | < 𝛿/2 whenever 𝑣𝑖 is 𝜖-independent of 𝐸𝑛. The conclusion
follows from noting that at least one position has probability of at least 1 − 1

𝜖2𝑛
of containing

a match value that is 𝜖-independent of 𝐸𝑛 and then applying the triangle inequality.
25Note that 𝑑𝑖 differs from 𝑑𝑖 defined previously because 𝑑𝑖 is the option value of a given firm 𝑖 whereas 𝑑𝑖 reflects the option value of

the firm in position 𝑖 taking into account the ranking as well.
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B Appendix: Proofs for Section 2

Lemma B.1 (Upper Bound on Platform Profit). For any sequence of algorithms, payment
rules, and corresponding selected equilibria, {(𝑎𝑛, 𝜌𝑛, 𝜎𝑛)}𝑛∈N, the platform’s limiting profit
is bounded above by lim sup𝑛→∞ Π(𝑎𝑛, 𝜌𝑛) ≤ (1 − 𝑞)𝑝

(
1 − 𝐺 (max{𝑟, 𝜂}|𝜃)

)
+ 𝑝𝑞.

Proof. First, letting 𝐷 (𝑎𝑛, 𝜌𝑛, 𝜎𝑛) the demand for the sponsored firm, we claim that
lim sup𝑛→ 𝐷 (𝑎𝑛, 𝜌𝑛, 𝜎𝑛) ≤ 1 − 𝐺 (max{𝑟, 𝜂}|𝜃). Observe that, because a consumer will
never purchase from the sponsored firm when if offers a match values below 𝜂, the expected
demand received by the sponsored firm is bounded above by 1 − 𝐺 (𝜂 |𝜃).

In the case where 𝑟 > 𝜂, we can tighten this upper bound as follows. Notice that if
𝑆𝑛 ⊂ Θ × 𝑉 × 𝑍 is the event in which the consumer buys from the sponsored firm in
equilibrium 𝜎𝑛, for a given 𝛿 > 0 we have

𝐷 (𝑎𝑛, 𝜌𝑛, 𝜎𝑛) = P(𝑆𝑛 ∩ {𝑣̂1 ≥ 𝑟 − 𝛿}) + P(𝑆𝑛 ∩ {𝑣̂1 < 𝑟 − 𝛿}). (8)

Denoting 𝐸𝑛 ≡ 𝑆𝑛 ∩ {𝑣̂1 < 𝑟 − 𝛿}, we now show that P(𝐸𝑛) → 0 as 𝑛 → ∞. Toward a
contradiction, suppose that P(𝐸𝑛) does not vanish in the limit, which is to say that there
is an 𝛼 > 0 and a subsequence {𝑛𝑘 }𝑘∈N satisfying P(𝐸𝑛𝑘 ) > 𝛼 for all 𝑘 . From Lemma 1,
there is a 𝑘∗ such that, for all 𝑘 ≥ 𝑘∗, there is a position 𝑖 ≤ 𝑛𝑘 with 𝑑𝑖 (𝑣̂𝑖, 𝜇(·|𝐸𝑛𝑘 )) >
𝑑𝑖 (𝑟 − 𝛿, 𝜇(·|𝐸𝑛𝑘 )) > 0. But this implies a contradiction as the consumer can yield a strictly
higher expected payoff by deviating and committing to inspect (or possibly paying the search
cost to reinspect) position 𝑖 whenever they know that the event 𝐸𝑛𝑘 has occurred. Therefore
P(𝐸𝑛) must vanish in the limit.

Next, observe that

P(𝑆𝑛 ∩ {𝑣̂1 ≥ 𝑟 − 𝛿}) ≤ P(𝑣̂1 ≥ 𝑟 − 𝛿) ≤ 1 − 𝐺 (𝑟 − 𝛿 |𝜃).

Thus, it follows that lim sup𝑛→∞ 𝐷 (𝑎𝑛, 𝜌𝑛, 𝜎𝑛) ≤ 1−𝐺 (𝑟 −𝛿 |𝜃). Moreover, as the inequality
holds for all 𝛿 > 0, we have lim sup𝑛→∞ 𝐷 (𝑎𝑛, 𝜌𝑛, 𝜎𝑛) ≤ 1 − 𝐺 (𝑟 |𝜃). This proves our first
claim.

Using this bound placed on the limiting demand, we now bound the platform’s limiting profit.
The platform’s profit is less than or equal to the winning bid. Let 𝛽𝑛 denote the expected
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winning bid in equilibrium 𝜎𝑛. Whenever a firm has a positive probability of winning the
auction, its equilibrium bid cannot exceed the expected profit conditional on winning. That is,
its bid is bounded above by (1−𝑞) · 𝑝 ·𝐷 (𝑎𝑛, 𝜌𝑛, 𝜎𝑛). The limiting equilibrium bids, therefore,
satisfy lim sup𝑛→∞ 𝛽𝑛 ≤ lim sup𝑛→∞(1 − 𝑞) · 𝑝 · 𝐷 (𝑎𝑛, 𝜌𝑛, 𝜎𝑛) ≤ (1 − 𝑞) · 𝑝 · (1 −𝐺 (𝑟 |𝜃)).
Because the expected revenue via commission fees is bounded above by 𝑝𝑞, the desired
conclusion follows. □

Using uniform obfuscation, it becomes possible to approximately guarantee that the consumer
buys from the sponsored firm whenever its match value exceeds 𝑟.

Lemma B.2 (Obfuscation Achieves Bound). Let {(𝑎𝑛, 𝜌𝑛, 𝜎𝑛)}𝑛∈N be a sequence of uniformly
obfuscating algorithms, payment rules, and selected equilibrium and suppose that for all
sufficiently large 𝑛, the consumer begins search at the sponsored position. Then the
probability that the consumer receives a match value above 𝑟 and searches at least one
organic firm vanishes in the limit.

Proof. Let 𝛿 > 0 and let 𝐸𝑛 denote the event in which the consumer receives a match value
above 𝑟 + 𝛿 from the sponsored firm and searches at least one organic firm. We begin by
proving the claim for the simpler problem where we replace the consumer in our model with
an "𝑚-restricted consumer" who shares the same preferences, but can search at most 𝑚 firms.
Combining this conclusion with Lemma A.3 then proves the original claim.

Fix 𝑚 ≥ 2 and let 𝐸𝑚,𝑛 denote the event in which the 𝑚-restricted consumer searches 𝑚
firms and 𝑣̂1 ≥ 𝑟 + 𝛿. We claim that lim𝑛→∞ P(𝐸𝑚,𝑛) = 0. Toward a contradiction, suppose
to the contrary that there is a constant 𝛼 > 0 and a subsequence {𝑛𝑘 }∞𝑘=1 along which
P(𝐸𝑚,𝑛𝑘 ) > 𝛼 holds for all 𝑘 . By Lemma 1, there is an 𝑛∗ for which 𝑛 ≥ 𝑛∗ implies that there
is at least one position 𝑖 ≤ 𝑛 satisfying 𝑑𝑖 (𝑣̂1, 𝜇(·|𝐸𝑛𝑘 )) < 𝑑𝑖 (𝑟 + 𝛿, 𝜇(·|𝐸𝑛𝑘 )) < 0. However,
because the algorithm is uniformly obfuscating, the match value distributions are the same
for all 𝑖 ∈ {𝑚, 𝑚 + 1, . . . , 𝑛} and thus 𝑑𝑚 (𝑟 + 𝛿, 𝜇(·|𝐸𝑛𝑘 )) < 0. This means that buying from
the sponsored position is, in expectation, strictly preferred to inspecting the 𝑚th position
conditional on the event 𝐸𝑚,𝑛𝑘 . This implies a contradiction as 𝐸𝑚,𝑛𝑘 is an event in which
the consumer inspects the 𝑚th position. Therefore, lim𝑛→∞ P(𝐸𝑚,𝑛) = 0.

Similarly, consider the case with 𝑚 ≥ 3 and let 𝐸(𝑚−1),𝑛 be the event in which 𝑣̂1 ≥ 𝑟 + 𝛿
and the 𝑚-restricted consumer searches at least 𝑚 − 1 firms. Given 𝐸(𝑚−1),𝑛, the expected
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difference in the expected utility between buying the good with the highest match value of
those which have been inspected in the first 𝑚 − 2 positions and continuing search to the
𝑚 − 1th position is greater than26

−𝑑𝑚−1(𝑟 + 𝛿, 𝜇(·|𝐸(𝑚−1),𝑛)) − P(𝐸𝑚,𝑛 |𝐸(𝑚−1),𝑛) · 𝑢∗.

By the same argument above, if P(𝐸(𝑚−1),𝑛) has a subsequence that is bounded away
from zero, then this expression is eventually positive along the subsequence, implying a
contradiction. Thus, P(𝐸(𝑚−1),𝑛) → 0. Continuing the argument, it inductively follows that
P(𝐸2,𝑛) → 0 for an 𝑚-restricted consumer with 𝑚 ≥ 2.

Let 0 < 𝜖 < −𝑢∗/𝑑𝑖 (𝑟 + 𝛿, 𝜇) and let 𝑚 be large enough so that the probability of searching
𝑚 − 1 more positions from a decision node is less than 𝜖 , as provided by Lemma A.2. Using
Lemma A.3, conditional on the event 𝐸𝑛, the difference between the expected utility of
buying the good from the sponsored position and searching the first organic position is
greater than

−𝑑2 (𝑟 + 𝛿, 𝜇(·|𝐸𝑛)) − P(𝐸2,𝑛 |𝐸𝑛) · 𝑢∗ − 𝜖 · 𝑢∗. (9)

Repeating the above arguments again, if P(𝐸𝑛) has a subsequence bounded away from zero,
then (9) is eventually positive for a large enough 𝑛, implying a contradiction. Therefore,
P(𝐸𝑛) → 0. As the choice of 𝛿 > 0 was arbitrary, the desired conclusion holds. □

Our interest is in equilibria in which all firms submit the same bid and the platform awards
the sponsored position to the firm with the highest match score and performs uniform
obfuscation within the organic positions. It is a straightforward calculation to show that, for
such algorithms and bidding strategies, the consumer optimally begins their search at the
sponsored position. The calculation can be found at the end of this Section in Subsection B.1.
For these equilibria, the demand for a firm with score that wins the sponsored position and
has a score of 𝜃𝑖 eventually exceeds 1 −𝐺 (𝑟 + 𝛿 |𝜃𝑖) for all 𝛿 > 0. Moreover, the distribution
of the winning firm’s score weakly converges to a point mass on 𝜃, thus, the sequence of the
uniformly obfuscating algorithms achieves the upper bound given in Lemma B.1.
26Let v𝑘 ≡ (𝑣̂1, . . . , 𝑣̂𝑘) . In the event 𝐸(𝑚−1) ,𝑛, the realized utility is (max v𝑚−1 − (𝑚 − 1) · 𝑠)1

𝐸𝐶
𝑚,𝑛

+ (max v𝑚 − 𝑚 · 𝑠)1𝐸𝑚,𝑛 ≤
max v𝑚−1 − (𝑚 − 1)𝑠 + max v𝑚 · 1𝐸𝑚,𝑛 . Subtracting the right side from the realized utility if the consumer were to only inspect
𝑚 − 2 firms yields 𝑠 − max{𝑣̂𝑚−1 − max v𝑚−2, 0} − max v𝑚 · 1𝐸𝑚,𝑛 . Taking the expectation of this expression given 𝐸(𝑚−1) ,𝑛 and
applying Lemma A.1 obtains−𝑑𝑚−1

(
max v𝑚−2, 𝜇 ( · |𝐸(𝑚−1) ,𝑛)

)
−E[max v𝑚 ·1𝐸𝑚,𝑛 |𝐸(𝑚−1) ,𝑛 ] > −𝑑𝑚−1 (𝑟 + 𝛿, 𝜇 ( · |𝐸(𝑚−1) ,𝑛)) −

P(𝐸𝑚,𝑛 |𝐸(𝑚−1) ,𝑛) · 𝑢∗.
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Notice that if a firm deviates to a higher bid then it wins the auction for sure, but loses
information about whether it has the highest match score. It must be that such a deviation
offers an expected profit of 𝑝(1 − 𝑞) (1 − 𝐺 (𝑟)) in the limit.

Proof of Theorem 1. First, observe that when 𝑟 > 𝜂, that a straightforward application of
the Mixing Lemma provides that the expected revenue via commission fees converges to 𝑝𝑞
under any sequence of algorithms. Otherwise, if we let 𝐸̃𝑛 denote the event in which the
consumer takes the outside option when there are 𝑛 firms, if there is a subsequence along
which P(𝐸̃𝑛𝑘 ) > 𝛼 > 0, there is an 𝑛∗ ∈ N such that 𝑑𝑖 (𝜂, 𝜇(·|𝐸̃𝑛)) > 0 whenever 𝑛 ≥ 𝑛∗.

Denote the leftmost side of (2) by 𝐿𝑛 and the rightmost side by 𝑅𝑛 so that (2) simplifies to
𝐿𝑛 ≤ 𝛽𝑛 ≤ 𝑅𝑛. We want to show that 𝐿𝑛 < 𝑅𝑛 as the number of firms grows large.

Given the algorithm and the consumer’s optimal search, we establish the following. First,
because total industry profit is bounded from above, the product 1

𝑛−1
∑𝑛
𝑚=1 𝜋(𝑚, 𝑛) vanishes

in the limit. Second, as we verify in Claim 1 below, the expected profit when deviating to a
higher bid converges to 𝜋̂(1, 𝑛) → (1 − 𝑞)𝑝(1 −𝐺 (𝑟)) since the consumer will only make a
purchase if their match with the sponsored firm exceeds 𝑟 and the distribution of the match
value of the upward deviating firm is 𝐺 (𝑣𝑖) =

∫ 𝜃

¯
𝜃
𝐺 (𝑣𝑖 |𝜃𝑖)𝑑𝐹 (𝜃𝑖). Third, if we let 𝜋̃∗(𝑚, 𝑛)

denote the expected profit for a firm deviating to a lower bid and being assigned to a position
𝑚 ≥ 2 given that it has the highest score, we have 𝜋̃(𝑚, 𝑛) = 1

𝑛
𝜋̃∗(𝑚, 𝑛) + 𝑛−1

𝑛
𝜋(𝑚, 𝑛).

Hence, we can write 𝑅𝑛 = 𝜋(1, 𝑛) − 1
𝑛−1

∑𝑛
𝑚=2 𝜋̃

∗(𝑚, 𝑛) where the bound on industry profit
guarantees that the rightmost term vanishes in the limit. Combining these three observations,
we find that 𝐿𝑛 → (1−𝑞)𝑝(1−𝐺 (𝑟)) and 𝑅𝑛 → (1−𝑞)𝑝(1−𝐺 (𝑟 |𝜃)) > (1−𝑞)𝑝(1−𝐺 (𝑟)),
where the inequality holds because 𝐺 (𝑣 |𝜃) satisfies the MLRP. Thus, there exists an 𝑛∗

such that 𝑛 ≥ 𝑛∗ implies 𝐿𝑛 ≤ 𝑅𝑛. Therefore, for 𝑛 ≥ 𝑛∗ there exist symmetric equilibria
in which all firms bid 𝛽𝑛 ∈ [𝐿𝑛, 𝑅𝑛]. Thus, we have that 𝑅𝑛 ≤ Π(𝑎𝑛, 𝜌𝑛). Because
𝑅𝑛 → (1 − 𝑞)𝑝(1 − 𝐺 (𝑟 |𝜃)) it follows that (𝑎̂𝑛, 𝜌̂𝑛)𝑛 is asymptotically optimal.

Claim 1 (Upward Deviation). Given (𝑎̂𝑛, 𝜌̂𝑛)𝑛, suppose all other firms play the proposed
symmetric equilibrium of bidding 𝛽𝑛 and the consumer searches optimally given the belief
that all firms bid 𝛽𝑛. Let 𝑆′𝑛 be the event in which a firm which deviates to a higher bid makes
a sale. Then lim𝑛→+∞ P(𝑆′𝑛) ≤ 1 − 𝐺 (𝑟).

Let 𝑆′𝑛 ⊂ Θ × 𝑉 × 𝑍 and 𝑆′𝑚,𝑛 ⊂ Θ × 𝑉 × 𝑍 be the events in which the consumer and
𝑚-restricted consumer buy the sponsored product given a deviation, respectively. As before,
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given the proposed strategies, it is without loss of generality to assume that the consumer
searches organic firms in order of their ranking. As the continuation value for the unrestricted
consumer is always at least that of the 𝑚-restricted consumer, we have 𝑆′𝑛 ⊂ 𝑆′𝑚,𝑛 for all 𝑚
and 𝑛. For a given 𝑘 ∈ N, let

¯
𝑣𝑘 ∈ (

¯
𝑣, 𝑟) satisfy 𝐺 (𝑟 |𝜃𝑖)−𝐺 (

¯
𝑣𝑘 |𝜃𝑖)

𝐺 (𝑟 |𝜃𝑖) ≥ 1 − 1
𝑘

for all 𝜃𝑖. Let 𝑉 𝑘

denote the event in which 𝑣𝑆 ∈ [
¯
𝑣𝑘 , 𝑟] given the deviation. Having assumed that the density

𝑔(𝑣𝑖 |𝜃𝑖) is positive on the interior and continuous, we know that there is a constant 𝑐 > 0
such that 𝑔(𝑣𝑖 |𝜃𝑖)

𝑔(𝑣𝑖 |𝜃 𝑗 ) ≥ 𝑐 whenever 𝑣𝑖 ∈ 𝑉 𝑘 for all 𝜃𝑖 and 𝜃 𝑗 .

Given the bound placed on the likelihood ratio in the event 𝑉 𝑘 , the 𝑚-restricted consumer’s
beliefs about the first𝑚−1 organic firm’s match values converges to the true distribution, which
is that they are IID 𝐺 (𝑣𝑖). At the limiting distribution, the probability that the 𝑚-restricted
consumer buys from the sponsored firm given 𝑉 𝑘 is

∫
𝑉 𝑘
𝐺 (𝑣𝑆)𝑚−1𝑑𝐺 (𝑣𝑆 |𝑉 𝑘 ) < 𝐺 (𝑟)𝑚−1.

Using the inequality

P(𝑆′𝑚,𝑛 |𝑣𝑆 ≤ 𝑟) ≤ P(𝑆′𝑚,𝑛 |𝑉 𝑘 ) P(𝑉 𝑘 |𝑣𝑆 ≤ 𝑟) + 1 − P(𝑉 𝑘 |𝑣𝑆 ≤ 𝑟)

≤ P(𝑆′𝑚,𝑛 |𝑉 𝑘 )
(
1 − 1

𝑘

)
+ 1
𝑘

we obtain

lim
𝑛→∞
P(𝑆′𝑚,𝑛 |𝑣𝑆 ≤ 𝑟) ≤ lim

𝑛→∞
P(𝑆′𝑚,𝑛 |𝑉 𝑘 )

(
1 − 1

𝑘

)
+ 1
𝑘
< 𝐺 (𝑟)𝑚−1

(
1 − 1

𝑘

)
+ 1
𝑘
.

As the above expression holds for all 𝑘 ∈ N, taking the limit as 𝑘 → ∞ we find
lim𝑛→∞ P(𝑆′𝑚,𝑛 |𝑣𝑆 ≤ 𝑟) ≤ 𝐺 (𝑟)𝑚−1. Because 𝑆′𝑛 ⊂ 𝑆′𝑚,𝑛, it follows that lim𝑛→∞ P(𝑆′𝑛 |𝑣𝑆 ≤
𝑟) ≤ 𝐺 (𝑟)𝑚−1 for all𝑚 ∈ N and therefore lim𝑛→∞ P(𝑆′𝑛 |𝑣𝑆 ≤ 𝑟) = 0. The desired conclusion
therefore follows from noting that P(𝑆′𝑛) = P(𝑆′𝑛 |𝑣𝑆 ≤ 𝑟)𝐺 (𝑟) +P(𝑆′𝑛 |𝑣𝑆 > 𝑟) (1−𝐺 (𝑟)). □

Define 𝑟 (𝜙) to be function satisfying 𝑠 =
∫ 𝑣̄

𝑟 (𝜙) (1 −𝐺 (𝑣 |𝜃 ≥ 𝜙))𝑑𝑣. Throughout, we assume
that 𝜂 < 𝑟 (𝜃) and denote 𝜁 = 𝑟−1(𝜂).

Proof of Theorem 2. Let 𝑁𝜙 (𝑛) denote the random variable corresponding to the number of
firms assigned to premium positions given the “premium score threshold” 𝜙 ≥ 𝜁 when there
are 𝑛 firms.

Consider now the variation of our model in which we replace the match score distributions
of all 𝑛 firms with the following truncated distribution 𝐹𝜙 (𝜃) ≡ 𝐹 (𝜃)−𝐹 (𝜙)

1−𝐹 (𝜙) · 1(𝜃 ≥ 𝜙). From

38



Theorem 1, we know that, in this setting, the platform’s limiting revenue from uniform
obfuscation in this problem is ℓ(𝜙) ≡ (1 − 𝑞)𝑝(1 − 𝐺 (𝑟 (𝜙) |𝜃)) + 𝑝𝑞.

Return to our model with the match scores of all 𝑛 firms distributed according to 𝐹 (𝜃),
using the premium obfuscation algorithm, the platform’s expected revenue conditional on
𝑁𝜙 (𝑛) = 𝑛̃ is equal to ℓ(𝜙) as it is precisely the same as applying uniform obfuscation
in the setting with 𝑛̃ + 1 firms and match scores drawn from 𝐹𝜙 (𝜃). Hence, denote
Π̃(𝑛̃, 𝜙) to be the platform’s expected revenue conditional on 𝑁𝜙 (𝑛) = 𝑛̃. From the above,
lim𝑛̃→∞ Π̃(𝑛̃, 𝜙) = ℓ(𝜙). Noting that P(𝑁𝜙 (𝑛) ≤ 𝑛† |𝑛) → 0 for all 𝑛† ∈ N provides that the
assigning firms with quality threshold 𝜙 to premium positions yields the platform a limiting
revenue of ℓ(𝜙).

Denoting 𝜙 𝑗 = 𝜁 + 1/ 𝑗 , we see that ℓ(𝜙 𝑗 ) → (1− 𝑞)𝑝(1−𝐺 (𝜂 |𝜃)) + 𝑝𝑞 as 𝑗 → ∞. Letting
𝑦𝑛 𝑗 denote the platform’s expected revenue in the game with 𝑛 firms when it uses premium
quality threshold 𝜙 𝑗 . Given that lim𝑛→∞ 𝑦𝑛 𝑗 = ℓ(𝜙 𝑗 ) for all 𝑗 and lim 𝑗→∞ ℓ(𝜙 𝑗 ) = ℓ(𝜁)
there must exist a function 𝑗∗(𝑛) such that lim𝑛→∞ 𝑦𝑛 𝑗∗ (𝑛) = ℓ(𝜁). This completes the
proof. □

Proof of Proposition 1. As Lemma B.1 identifies the maximal limiting profit under the
information structures as (1 − 𝑞)𝑝(1 − 𝐺 (𝛾 |𝜃)) + 𝑝𝑞 and (1 − 𝑞)𝑝(1 − 𝐺̃ (𝛾 |𝜃)) + 𝑝𝑞
respectively with 𝛾 = max{𝑟, 𝜂}, the result follows from showing 𝐺̃ (𝛾 |𝜃) ≤ 𝐺 (𝛾 |𝜃).
Drawing from the argument for Theorem 5.1 in Lehmann (1988), let {𝛼𝑚} be a vanishing
sequence of values in (0, 1), {𝑡𝑚} the sequence satisfying 𝐹 (𝑡𝑚 |𝛾) = 1 − 𝛼𝑚, and {𝑡𝑚} the
sequence satisfying 𝐹̃ (𝑡𝑚 |𝛾) = 1 − 𝛼𝑚. Due to the fact that 𝐹̃ is more accurate than 𝐹, we
have 𝐹 (𝑡𝑚 |𝑣𝑖) ≤ 𝐹̃ (𝑡𝑚 |𝑣𝑖) for all 𝑣𝑖 < 𝛾 and 𝐹 (𝑡𝑚 |𝑣𝑖) ≥ 𝐹̃ (𝑡𝑚 |𝑣𝑖) for all 𝑣𝑖 > 𝛾. Consider
the two posterior probabilities

𝐺 (𝛾 |𝜃𝑖 ≥ 𝑡𝑚) =

∫ 𝛾

¯
𝑣

(1 − 𝐹 (𝑡𝑚 |𝑣𝑖)) 𝑔(𝑣𝑖)𝑑𝑣∫ 𝑣̄

¯
𝑣
(1 − 𝐹 (𝑡𝑚 |𝑣𝑖)) 𝑔(𝑣𝑖)𝑑𝑣

𝐺̃ (𝛾 |𝜃𝑖 ≥ 𝑡𝑚) =

∫ 𝛾

¯
𝑣

(
1 − 𝐹̃ (𝑡𝑚 |𝑣𝑖)

)
𝑔(𝑣𝑖)𝑑𝑣∫ 𝑣̄

¯
𝑣

(
1 − 𝐹̃ (𝑡𝑚 |𝑣𝑖)

)
𝑔(𝑣𝑖)𝑑𝑣

.
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By rearranging terms, we see that 𝐺̃ (𝛾 |𝜃𝑖 ≥ 𝑡𝑚) ≤ 𝐺 (𝛾 |𝜃𝑖 ≥ 𝑡𝑚) if and only if∫ 𝛾

¯
𝑣

(
1 − 𝐹̃ (𝑡𝑚 |𝑣𝑖)

)
𝑔(𝑣𝑖)𝑑𝑣∫ 𝛾

¯
𝑣

(1 − 𝐹 (𝑡𝑚 |𝑣𝑖)) 𝑔(𝑣𝑖)𝑑𝑣
≤

∫ 𝑣̄

𝛾

(
1 − 𝐹̃ (𝑡𝑚 |𝑣𝑖)

)
𝑔(𝑣𝑖)𝑑𝑣∫ 𝑣̄

𝛾
(1 − 𝐹 (𝑡𝑚 |𝑣𝑖)) 𝑔(𝑣𝑖)𝑑𝑣

(10)

which must hold as the left side is less than one while the right side exceeds one. Thus,
𝐺̃ (𝛾 |𝜃𝑖 ≥ 𝑡𝑚) ≤ 𝐺 (𝛾 |𝜃𝑖 ≥ 𝑡𝑚) for all 𝑚. At the same time, 𝐺 (𝛾 |𝜃𝑖 ≥ 𝑡𝑚) → 𝐺 (𝛾 |𝜃) and
𝐺̃ (𝛾 |𝜃𝑖 ≥ 𝑡𝑚) → 𝐺̃ (𝛾 |𝜃) as 𝑚 → +∞, implying 𝐺̃ (𝛾 |𝜃) ≤ 𝐺 (𝛾 |𝜃). □

B.1 Calculations

Consider the problem of the 𝑚-restricted consumer. Under the proposed equilibria the
match value distribution of the sponsored firm converges to 𝐺 (𝑣 |𝜃) and the distributions for
the first 𝑚 − 1 organic positions converge to the marginal distribution 𝐺 (𝑣). The optimal
search strategy at the limiting distribution is to follow Weitzman’s rule, first inspecting the
sponsored firm. As 𝑚 grows large, the expected payoff then approaches∫ 𝑣̄

¯
𝑣

max{𝑣, 𝑟}𝑑𝐺 (𝑣 |𝜃) − 𝑠. (11)

Of the strategies that do not involve beginning search at the sponsored position, the optimal
one involves beginning search at an organic position and then following Weitzman’s rule
thereafter. As 𝑚 grows large, the expected payoff from this strategy converges to∬

max{𝑣′,min{𝑣, 𝑟∗}, 𝑟}𝑑𝐺 (𝑣′)𝑑𝐺 (𝑣 |𝜃) − (1 + 𝐺 (𝑟∗))𝑠. (12)

Noting that (11) is strictly larger than (12), it follows that an 𝑚-restricted consumer strictly
prefers to begin search at the sponsored position as 𝑛 grows large, and that the loss from
beginning search at an organic position is bounded away from zero for large 𝑚. Combining
this with Lemma A.3, it follows that, under the proposed equilibrium and for large enough 𝑛,
the unrestricted consumer strictly prefers to begin their search at the sponsored position.
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C Appendix: Proofs for Section 3

C.1 Privately Informed Firms

For simplicity, this Section proves Proposition 2 under the assumption that the outside option
is non-binding. The argument readily extends to the case with a binding outside option and
premium positions following the approach used to prove Theorem 2.

Consider an algorithm which awards the sponsored slot to the firm with the highest adjusted
bid and uniformly and randomly assigns all other firms to organic positions. Denote
𝑏̄ ≡ (1 − 𝑞)𝑝(1 − 𝐺 (𝑟 |𝑡 + 𝜃)). A firm’s adjusted bid 𝜓(𝑏𝑖, 𝜃𝑖) is a smooth and strictly
increasing function of firm’s bid on [0, 𝑏̄] and score on [

¯
𝜃, 𝜃]. Normalize the smallest

adjusted bid to 𝜓(0,
¯
𝜃) = 0. We suppose that for all bids 𝑏𝑖 > 𝑏̄ the adjusted score is the

same as if they had bid zero 𝜓(𝑏𝑖, 𝜃𝑖) = 𝜓(0, 𝜃𝑖). Specify the payment rule so that the firm
that wins the auction pays the value of its bid. As bidding higher than 𝑏̄ is dominated by
bidding zero, it is without loss in generality to restrict the firms’ strategy space to bids in
[0, 𝑏̄]. Because the distribution of 𝜃𝑖 is atomless, the probability of tying is zero. Thus, each
firm’s expected profit is continuous in the bids on [0, 𝑝]. Using Lemma B.2, we pin down a
lower bound on the expected profit for a firm from winning the auction when 𝑛 grows large.

Lemma C.1. For all 𝜖′ > 0 and 𝑣̄′ ∈ (𝑟, 𝑣̄) there exists 𝑛′ ∈ N such that, if 𝑛 ≥ 𝑛′, then a
firm with signal 𝑦𝑖 = (𝜃𝑖, 𝑡𝑖) that wins the auction generates an expected profit that is greater
than (1 − 𝑞)𝑝(𝐺 (𝑣̄′|𝑦𝑖) − 𝐺 (𝑟 |𝑦𝑖)) − 𝜖′.

Proof. Let V𝑛 ⊂ [𝑟, 𝑣̄′] denote the subset of match values such that the consumer buys
immediately from the sponsored firm if 𝑣̂1 ∈ [𝑟, 𝑣̄′]\V𝑛 and searches at least one more firm
𝑣̂1 ∈ V𝑛. From the Lemma B.2, the Lebesgue measure of V𝑛 must vanish in the limit. Thus,
when a firm with signal 𝑦𝑖 = (𝜃𝑖, 𝑡𝑖) wins the auction, it makes a sale immediately with
probability 𝐺 (𝑣̄′|𝑦𝑖) − 𝐺 (𝑟 |𝑦𝑖) −

∫
V𝑛
𝑑𝐺 (𝑣𝑖 |𝑦𝑖).

We argue that
∫
V𝑛
𝑑𝐺 (𝑣𝑖 |𝑦𝑖) uniformly converges to zero as 𝑛 → ∞. The density 𝑔(𝑣𝑖 |𝑦𝑖)

is finite for all 𝑦𝑖 ∈ [
¯
𝑦, 𝑦̄] and 𝑣𝑖 ∈ [𝑟, 𝑣̄′]. Due to compactness and continuity, there must

be a constant 𝑐 > 0 such that max𝑣𝑖∈[𝑟,𝑣̄′],𝑦𝑖∈[
¯
𝑦,𝑦̄] 𝑔(𝑣𝑖 |𝑦𝑖) ≤ 𝑐. But then it follows that

max𝑦𝑖∈[
¯
𝑦,𝑦̄]

∫
V𝑛
𝑔(𝑣𝑖 |𝑦𝑖)𝑑𝑣𝑖 ≤ 𝑐 · 𝜆(V𝑛) and uniform convergence follows. Thus, it follows

that, for all 𝜖′ > 0 there exists 𝑛′ ∈ N such that, if 𝑛 ≥ 𝑛′, then a deviating firm’s profit given
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that it wins the auction and has a signal of 𝑦𝑖 is greater than (1 − 𝑞)𝑝(𝐺 (𝑣̄′|𝑦𝑖) −𝐺 (𝑟 |𝑦𝑖)) −
𝜖′. □

Proof of Proposition 2. Consider the sequence of uniformly obfuscating algorithms de-
scribed above. Now, assume that the consumer begins search at the sponsored position. The
calculation found in Subsection B.1 verifies that this is optimal in the limit. As all payoffs
are continuous in each player’s strategy and the strategy spaces are compact, Theorem 3.1
in Balder (1988) establishes the existence of an equilibrium. The argument in Lemma B.1
provides that the limit inferior of the profit derived from any sequence of algorithms is
bounded above by 𝑏̄. We want to show that the uniformly obfuscating algorithms described
above achieve this upper bound. Towards this end, we begin by proving the following claim.
For each 𝑛 ≥ 2, let 𝜎𝑛 be an equilibrium strategy profile for the game featuring 𝑛 firms.

Let Ψ𝑛 be the random variable denoting the highest adjusted bid in equilibrium 𝜎𝑛. We claim
that Ψ𝑛 weakly converges to point mass on 𝜓̄ ≡ 𝜓(𝑏̄, 𝜃). Toward a contradiction, suppose
to the contrary that there is a 𝜓∗ < 𝜓̄, an 𝜖 > 0, and a subsequence {𝑛𝑘 }𝑘∈N such that
P(Ψ𝑛𝑘 ≤ 𝜓∗) ≥ 𝜖 for all 𝑘 . Let 𝑖𝑛 be a firm with the lowest expected profit in equilibrium 𝜎𝑛.
The expected profit for 𝑖𝑛 must vanish in the limit. Let Ψ̂𝑛 correspond to the highest adjusted
bid among firms 𝑗 ≠ 𝑖𝑛. As Ψ̂𝑛 ≤ Ψ𝑛, it must also be that P(Ψ̂𝑛𝑘 ≤ 𝜓∗) ≥ 𝜖 for all 𝑘 . Let
𝑀 = {𝜆 ∈ Δ( [0, 𝜓̄]) : 𝜆( [0, 𝜓∗]) ≥ 𝜖}. As Δ( [0, 𝜓̄]) is compact and 𝑀 a closed subset of
Δ( [0, 𝜓̄]), 𝑀 is also compact. We want to show that, for 𝑛 large enough, firm 𝑖𝑛 can achieve
a positive payoff whenever the distribution of Ψ̂𝑛 is given by a probability measure 𝜆 ∈ 𝑀 .

Let 𝑏∗ denote the bid that satisfies 𝜓(𝑏∗, 𝜃) = 𝜓∗. Let 𝜖′ > 0 be small enough and 𝑣̄′ large
enough so that (1 − 𝑞)𝑝(𝐺 (𝑣̄′|𝑡 + 𝜃) −𝐺 (𝑟 |𝑡 + 𝜃)) − 𝜖′ > 𝑏∗. From Lemma C.1, there is an
𝑛′ ∈ N such that 𝑛 ≥ 𝑛′ implies that the expected net profit from winning the auction for a
firm 𝑖 with signal 𝑡𝑖 and score 𝜃𝑖 is at least (1 − 𝑞)𝑝(𝐺 (𝑣̄′|𝜃𝑖 + 𝑡𝑖) − 𝐺 (𝑟 |𝜃𝑖 + 𝑡𝑖)) − 𝜖′.

Suppose that the distribution of Ψ̂𝑛 is 𝜆 ∈ 𝑀. Notice that if 𝜆
( [

0, 𝜓
(
0, 𝜃

) ) )
> 0, then

firm 𝑖𝑛’s expected profit from always bidding zero is positive. Suppose instead that
𝜆

( [
0, 𝜓

(
0, 𝜃

) ) )
= 0 so that 𝑖𝑛’s bid must be positive to ensure a positive chance of winning

the auction. Let
¯
𝜓 = min supp𝜆. Notice that if 𝑖𝑛 submits the bid

¯
𝑏 that satisfies 𝜓(

¯
𝑏, 𝜃) =

¯
𝜓,

then the probability of 𝑖𝑛 winning the auction is zero. All bids higher than
¯
𝑏 deliver a positive

probability of winning the auction. Letting 𝑏𝑖𝑛 → ¯
𝑏 from the right, the distribution of 𝑖𝑛’s

score conditional on winning the auction weakly converges to a point mass on 𝜃. When 𝑡𝑖𝑛 is
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in a neighborhood of 𝑡, then
∬

(1 − 𝑞)𝑝(𝐺 (𝑣̄′|𝜃𝑖𝑛 + 𝑡𝑖𝑛) −𝐺 (𝑟 |𝜃𝑖𝑛 , 𝑡𝑖𝑛))𝑑𝐹 (𝜃𝑖𝑛 |𝜓(𝑏𝑖𝑛 , 𝜃𝑖𝑛) ≥
𝑥)𝑑𝜆(𝑥) − 𝜖′ > 𝑏∗ > 𝑏𝑖𝑛 . This means that for all 𝑛 ≥ 𝑛′, if the distribution of Ψ̂𝑛 is 𝜆,
then 𝑖𝑛 has a positive expected profit. Since 𝑀 is compact and firm 𝑖𝑛’s expected profit
is continuous in the adjusted bid distribution for all other firms, then firm 𝑖𝑛’s expected
profit is bounded away from zero for all 𝑛 ≥ 𝑛′. But this implies a contradiction and thus
lim inf𝑛→∞ P(Ψ𝑛 ≥ 𝜓∗) = 1 for all 𝜓∗ < 𝜓̄. The desired conclusion follows. □

C.2 Heterogeneous Prices

Proof of Proposition 3. Consider a sequence of algorithms (𝑎𝑛)𝑛∈N, each of which assigns
the sponsored slot to the highest bidding firm, with ties being broken in favor of higher
match scores. Moreover, 𝑎𝑛 uniformly obfuscates all firms with 𝑝 > 𝑝𝐾 − 1

𝑛
and 𝜃 > 𝜁 + 1

𝑛

across premium positions, where∫ 𝑣̄

𝛾

(𝑣 − 𝛾)d𝐺 (𝑣 |𝜃 > 𝜁) = 𝑠.

We now show that (𝑎𝑛)𝑛∈N asymptotically maximizes (1) commission revenue from non-
sponsored slots given the consumer does not buy from the sponsored slot, (2) profits from
the sponsored slot, and (3) that (𝑎𝑛)𝑛∈N thereby maximizes total platform revenue.

(1) Denote commission earnings from non-sponsored positions, conditional on the consumer
not buying from the sponsored slot, by 𝑅, which is bounded by 𝑝𝐾𝑞. By the Mixing
Principle of Consumer search, for 𝑛 → ∞, there exists—under any search history—almost
surely a premium slot with a reservation value that exceeds 𝜂. It follows that the conditional
probability that the consumer buys from a firm in a premium position converges to 1, and,
thus 𝑅(𝑎𝑛) → 𝑝𝐾𝑞.

(2) Note that the profits of the firm in the sponsored slot, denoted by 𝜋𝑠 (𝑎𝑛), are bounded
by max𝑝∈P

(
1 − 𝐺 (𝛾 + 𝑝 |𝜃)

)
. We assume that P is sufficiently dense so that there exists

a unique maximizer 𝑝∗ ∈ P. It follows that this expression also constitutes a bound for
platform profits from the sponsored slot. Due to the independence of prices, match scores,
and match values between firms, the Mixing Principle of Consumer Search implies that
a consumer buys from the sponsored if and only if 𝑣𝑠 − 𝑝∗ ≥ 𝛾 as 𝑛 → ∞, and, thus,
lim
𝑛→∞

𝜋𝑠 (𝑎𝑛) =
(
1 − 𝐺 (𝛾 + 𝑝∗ |𝜃)

)
.
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Lemmas S.2 and S.3 in the Online Appendix establish (i) that the winning firm’s type
approaches 𝜃, (ii) that the price of that firm is 𝑝∗, and (iii) that the platform is indeed able to
extract the expected profits of the firm in the sponsored slot.

(3) To see why (𝑎𝑛)𝑛∈N asymptotically maximizes total platform profits, note that

lim
𝑛→∞

(𝜋𝑠 (𝑎𝑛) + 𝑅(𝑎𝑛)) = 𝑝(1 − 𝐺 (𝛾 + 𝑝 |𝜃)) + 𝐺 (𝛾 + 𝑝 |𝜃)𝑝𝐾𝑞. (13)

Any alternative sequence (𝑎′𝑛)𝑛∈N (weakly) reduces both 𝜋𝑠 and 𝑅 because of (1) and (2). It
follows that for any alternative sequence of algorithms (𝑎′𝑛)𝑛∈N to yield higher total limit
profits than (𝑎𝑛)𝑛∈N, the sequence (𝑎′𝑛)𝑛∈N must increase the probability that the consumer
buys from a non-sponsored slot (which equals 𝐺 (𝛾 + 𝑝 |𝜃) under 𝑎𝑛), thereby reducing the
probability they buy from the sponsored one (which equals 1 −𝐺 (𝛾 + 𝑝 |𝜃) under 𝑎𝑛) by the
same amount. This, however, is only profitable if 𝑝∗ ≥ 𝑞𝑝𝐾 contradicting (6).

□
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S.1 Example 1

In this Section, we discuss an example illustrating how uniform obfuscation can fail to
be optimal when there are a small number of firms, because of non-monotonicities in the
inference consumers draw from observing their match value at the sponsored slot.

Suppose there are three firms 𝑖 = 1, 2, 3. The consumer’s match value is either low ℓ, medium
𝑚, or high ℎ and a good is only worth purchasing if it provides at least a medium value. A
firm’s match score is 𝐿 when the value is low and 𝐻 when the value is either medium or
high, i.e., the platform can distinguish firms with low match scores from other firms, but
cannot distinguish firms with medium and high match scores. Let 𝑝𝐻 and 𝑝𝐿 denote the
marginal probability that a firm’s score is high and low, respectively.27

Suppose the platform employs the following algorithm. The firm with the highest bid is
placed in sponsored positions, ties are broken in favor of the firm with the highest match
score, further ties are broken with equal probability. For the two nonsponsored firms, if only
one of them has a high signal it is placed in the second position with probability 𝛼 ≥ 1

2 ,
otherwise they are arranged in the organic positions with equal probability.

Given the algorithm, the consumer’s optimal search proceeds in the following manner. If the
sponsored firm’s value is high ℎ, then the consumer buys it immediately since there is no
advantage from continuing. If instead the sponsored firm’s value is low ℓ, then given the
27This example departs from the assumptions of our model in that the distribution of match values conditional on the match scores do

not share the same support. This is insignificant to the particular example since we could modify the distributions to P( {ℓ } |𝐿) =
P( {𝑚, ℎ} |𝐻) = 1 − 𝜀 so that the conclusion continues to hold for 𝜀 > 0 sufficiently small.
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algorithm, the consumer learns that all remaining firms must likewise have low match values
and so the consumer might as well exit the market. If, however, the consumer observes 𝑚 in
the sponsored slot, then it might still be prudent to continue searching as some remaining
firm might deliver a higher match value. To describe the consumer’s learning over the course
of search, let subscripts denote the index of the position so that the list of possible events
are {(𝐻1, 𝐻2, 𝐻3), (𝐻1, 𝐿2, 𝐻3), (𝐻1, 𝐻2, 𝐿3), (𝐻1, 𝐿2, 𝐿3) (𝐿1, 𝐿2, 𝐿3)} which occur with
corresponding probabilities {𝑝3

𝐻
, 3(1 − 𝛼)𝑝2

𝐻
𝑝𝐿 , 3𝛼𝑝2

𝐻
𝑝𝐿 , 3𝑝𝐻 𝑝2

𝐿
, 𝑝3

𝐿
}. The probability

that slot two has a high score given that the first does is

P(𝐻2 |𝐻1;𝛼) =
𝑝3
𝐻
+ 3𝛼𝑝2

𝐻
𝑝𝐿

1 − 𝑝3
𝐿

. (S.1)

The probability that slot three has a high score given that the first two also do is

P(𝐻3 |𝐻1, 𝐻2;𝛼) =
𝑝3
𝐻

𝑝3
𝐻
+ 3𝛼𝑝2

𝐻
𝑝𝐿
. (S.2)

The probability that slot three has a high score given that the first does and the second has a
low score is

P(𝐻3 |𝐻1, 𝐿2;𝛼) =
3(1 − 𝛼)𝑝2

𝐻
𝑝𝐿

3(1 − 𝛼)𝑝2
𝐻
𝑝𝐿 + 3𝑝𝐻 𝑝2

𝐿

. (S.3)

Inspecting the above expressions, we find that (S.2)>(S.3) which naturally implies that the
consumer is more optimistic about the third slot upon observing a medium match value in
the first two slots than if they were to observe a medium in the first and a low in the second.
Also, (S.1)>(S.3) holds true, implying the consumer is more optimistic about the second
slot after observing a medium in the first than they are about the third slot upon observing a
medium and low value in the first two. The comparison between (S.1) and (S.2) depends on
𝛼. As Figure 1 illustrates, increasing 𝛼 makes proceeding to the second firm more attractive,
but continuing to the third less so.

Suppose the parameters are such that, under uniform obfuscation (i.e. when 𝛼 = 1/2), the
consumer continues searching when observing 𝑚 in the first firm and 𝑚 in the second firm,
but halts otherwise. To be concrete, assume that the parameters satisfy 1

2P(𝐻2 |𝐻1;𝛼 =

1
2 ) (ℎ − 𝑚) = 𝑠 which leads the consumer to follow the desired search pattern. We compare
uniform obfuscation against a nonuniformly obfuscating algorithm with 𝛼 = 𝛼∗ > 1

2 whereby
𝛼∗ is large enough to ensure that a consumer will inspect the second slot if the first provides

2



0.55 0.60 0.65 0.70 0.75
α

0.40

0.45

0.50

0.55

0.60

0.65

P(H2|H1;α)

P(H3|H1,H2;α)

P(H3|H1,L2;α)

Figure 1: The figure plots the conditional probabilities as a function of 𝛼 given that match
values each occur with equal probability.

a medium match value, but will search no further. For example, in Figure 1, given our
assumptions on parameters, setting 𝛼 = 0.6 guarantees that P(𝐻3 |𝐻1, 𝐻2;𝛼∗) < P(𝐻2 |𝐻1; 1

2 )
and thus it is never optimal for the consumer to inspect the third firm. Notice that by
providing some information in the organic slots, the nonuniformly obfuscating algorithm
makes inspecting the second firm more desirable, but increases a sponsored firm’s return
demand as consumers will not inspect the third firm.

For each algorithm, consider a symmetric equilibrium in which each firm bids 𝛽. Figure
2 plots the tentative expected equilibrium and deviation profits under the two proposed
algorithms for different values of the bid 𝛽. Naturally, the expected profit from playing the
tentative equilibrium strategy is decreasing in the bid with a slope of −1

3 as each of the
three firms win with equal probability. Placing a higher bid, no matter how high, ensures
that a firm wins the auction, but also makes winning uninformative as it does not provide
information about the firm’s match score. The slope of the expected profit given an upward
deviation is thus −1. Thus, this deviation risks winning in case the firm has a medium match
score and consumers continue searching after visiting the sponsored slot. The deviation is
optimal for low values of the candidate equilibrium bid, but not for higher values. Offering
a bid less than 𝛽 ensures that a firm does not win the sponsored slot; hence, the deviation
profit is simply the expected profit in an organic slot and does not depend on the bid.

We can use Figure 2 to compare the profitability of the two algorithms by comparing the
range of bids firms are willing to place. The figure shows that, in principle, there can be a
continuum of equilibrium bids. However, we only need to compare the equilibria with the
highest bids as the platform can secure a profit equal to this bid by setting a reserve price
equal to the highest possible equilibrium bid. As illustrated by Figure 2, using a uniform

3



0.2 0.4 0.6 0.8 1.0
β

-0.4

-0.2

0.2

0.4
Uniform Obfuscation: α=0.5

Bidding β

Deviate Down

Deviate Up

(a)

0.2 0.4 0.6 0.8 1.0
β

-0.4

-0.2

0.2

0.4
Nonuniform Obfuscation: α=0.6

(b)

Figure 2: The figures plot an individual firm’s expected profit in a tentative symmetric
equilibrium in which all firms bid 𝛽 under the respective algorithms from likewise bidding
𝛽, deviating to a lower bid, and deviating to a higher bid (given that match values each occur
with equal probability).
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obfuscation algorithm, the platform can achieve a profit of exactly 1
2 , which is identified by

finding the highest value for the bid at which no firm wishes to deviate from placing that bid.
On the other hand, using the nonuniformly obfuscating algorithm, the platform can secure a
profit of approximately 0.6. Thus, due to the learning from match values at the sponsored
slots, the platform is better off choosing the nonuniformly obfuscating algorithm.

S.2 Example 2

In this Section, we discuss an example illustrating how the platform may deviate from
assigning the firm with the highest match score to the sponsored slot when there are a small
number of firms. To this end, consider a similar setup as before in Example 1 where there
are three distinct match values 𝑙, 𝑚, ℎ and where the platform cannot distinguish medium
and high values, but perfectly recognizes a low value firm. Thus, when the match value is 𝑙,
the match score is 𝐿 and when the match values is either 𝑚 or ℎ the platform has a match
score of 𝐻. Now there are four firms, however. Moreover, suppose the consumer would
choose any match value, including the lowest 𝑙, over their outside option.

Consider two different algorithms, one where the platform always puts the firm with the
highest match score in the sponsored position and uniformly obfuscates the organic positions
and another, second, algorithm where the platform almost always follows the same algorithm
apart from the case where two match scores are 𝐿 and two are 𝐻. In that case the platform
puts a firm with the lowest match score in the sponsored position and uniformly obfuscates
the organic positions.

We show the conditions under which the second algorithm gives the winning firm a higher
probability of selling. In particular, consider that with the first algorithm the consumer buys
immediately from the sponsored position whenever it contains an ℎ or 𝑙 value, but they
continue to search if he sees an 𝑚 value. On the other hand, with the second algorithm the
consumer buys immediately from the sponsored position whatever its match value. As the
second algorithm makes sure that the consumer will always buy from the sponsored position
and never buys from an organic position, it is clear that platform gets its highest possible
profit as firms bid maximally to get into the sponsored position.

We first consider under what conditions after observing an 𝑚 in the sponsored slot the
consumer continues to search under the first algorithm, but not under the second, and we start

5



the analysis with the second algorithm. We use backward induction to determine the pay-off
for the consumer if he decides to continue to search after observing an 𝑚. So, consider that
after observing an 𝑚 in the first round, the consumer observes either 𝑙𝑙, 𝑚𝑙 (or 𝑙𝑚) or 𝑚𝑚 in
the subsequent two rounds (and we thus focus on whether the consumer wants to inspect the
last object or not). If, in the meantime a consumer has found an ℎ object, they will of course
buy immediately).

(i) After observing 𝑚𝑙𝑙 in the first three search rounds, the consumer obviously stops
searching, as they must update their beliefs in such a way that the last object is also an 𝑙.
Their pay-off in this case is 𝑚 − 3𝑠.

(ii) After observing 𝑚𝑙𝑚 or 𝑚𝑚𝑙 in the first three search rounds, we postulate the consumer
continues searching as under the second algorithm the only pattern that is consistent with
this is for there to be an 𝐻 object in the last round. Thus, the consumer’s pay-off, then would
be 1

2 (𝑚 + ℎ) − 4𝑠 > 𝑚 − 3𝑠. Thus, we implicitly assume that ℎ − 𝑚 > 2𝑠.

(iii) Finally, after observing 𝑚𝑚𝑚 in the first three search rounds, we postulate the consumer
continues searching. Updating their beliefs, if the consumer continues to search they
encounter an 𝐿 on the last search with probability

1
3 ·4𝑝

3
𝐻
𝑝𝐿

1
3 ·4𝑝

3
𝐻
𝑝𝐿+𝑝4

𝐻

=
4𝑝𝐿

4𝑝𝐿+3𝑝
𝐻

and an 𝐻 with

probability 3𝑝𝐻
4𝑝𝐿+3𝑝𝐻 . Thus, the consumer’s pay-off would then be 8𝑝𝐿+3𝑝𝐻

8𝑝𝐿+6𝑝𝐻𝑚 + 3𝑝𝐻
8𝑝𝐿+6𝑝𝐻 ℎ− 4𝑠

(and this is better than stop searching with a payoff of 𝑚 − 3𝑠, if 3𝑝𝐻
8𝑝𝐿+6𝑝𝐻 (ℎ −𝑚) > 𝑠). Thus,

we implicitly assume that
ℎ − 𝑚
𝑠

> 2 + 8𝑝𝐿
3𝑝𝐻

. (S.4)

Note that this condition also implies that ℎ − 𝑚 > 2𝑠.

Let us then go back one search round and consider that the consumer after observing an 𝑚
in the first round, they observes either 𝑙 or 𝑚 in the next round.

(i) After observing 𝑚𝑙 in the first two search rounds, we postulate the consumer stops
searching, as they must update their beliefs in such a way that the last two objects are either 𝑙𝑙
or 𝐻𝐻. Given the second algorithm, the total ex ante probability that the consumer observes
𝑚𝑙 in the first two search rounds is 1

3 · 4𝑝3
𝐻
𝑝𝐿 + 4𝑝3

𝐿
𝑝𝐻 and thus continuing to search yields

an expected pay-off of

4𝑝3
𝐿
𝑝𝐻

1
3 · 4𝑝3

𝐻
𝑝𝐿 + 4𝑝3

𝐿
𝑝𝐻

(𝑚 − 3𝑠) +
1
3 · 4𝑝3

𝐻
𝑝𝐿

1
3 · 4𝑝3

𝐻
𝑝𝐿 + 4𝑝3

𝐿
𝑝𝐻

(
1
2
(ℎ − 3𝑠) + 1

2

(
1
2
(𝑚 + ℎ) − 4𝑠

))
.
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This is smaller than 𝑚 − 2𝑠 (the pay-off if they stop searching) if, and only if, 1
2 (ℎ − 2𝑠) +

1
2

(
1
2 (𝑚 + ℎ) − 3𝑠

)
< 𝑚 − 2𝑠 +

1
3 ·4𝑝

3
𝐻
𝑝𝐿+4𝑝3

𝐿
𝑝𝐻

1
3 ·4𝑝

3
𝐻
𝑝𝐿

𝑠, or 3
4 (ℎ −𝑚) <

(
3
2 + 3𝑝2

𝐿

𝑝2
𝐻

)
𝑠, which is true if

ℎ − 𝑚
𝑠

< 2 +
4𝑝2

𝐿

𝑝2
𝐻

. (S.5)

(ii) After observing 𝑚𝑚 in the first two search rounds, we postulate the consumer continues
to search all the way until they found an ℎ object, as they must update their beliefs in such
a way that the last two objects are either 𝐻𝐿, 𝐿𝐻 or 𝐻𝐻 (which happens with a total ex
ante probability of 2

3 · 4𝑝3
𝐻
𝑝𝐿 + 𝑝4

𝐻
) and thus they get an additional pay-off of continuing to

search of

𝑝𝐻

𝑝𝐻 + 2
3 · 4𝑝𝐿

(
1
2
(ℎ − 𝑚 − 𝑠) + 1

2

(
1
2
(ℎ − 𝑚) − 2𝑠

))
+

2
3 · 4𝑝𝐿

𝑝𝐻 + 2
3 · 4𝑝𝐿

(
1
2
(ℎ − 𝑚 − 1

2
𝑠) − 3

4
· 2𝑠

)
=

3𝑝𝐻
3𝑝𝐻 + 8𝑝𝐿

(
3
4
(ℎ − 𝑚) − 1

1
2
𝑠

)
+ 8𝑝𝐿

3𝑝𝐻 + 8𝑝𝐿

(
1
2
(ℎ − 𝑚) − 7

4
𝑠

)
=

9
4 𝑝𝐻 + 4𝑝𝐿
3𝑝𝐻 + 8𝑝𝐿

(ℎ − 𝑚) −
9
2 𝑝𝐻 + 14𝑝𝐿
3𝑝𝐻 + 8𝑝𝐿

𝑠,

which should be larger than 0 for them to prefer to continue searching, which is the case if

ℎ − 𝑚
𝑠

>

9
2 𝑝𝐻 + 14𝑝𝐿
9
4 𝑝𝐻 + 4𝑝𝐿

. (S.6)

So, now we can give a condition under which the consumer stops searching after observing
an 𝑚 in the first slot as their overall additional pay-off (incorporating learning and optimal
search) of continuing to search after observing an 𝑚 in the first round instead of stopping
immediately is (as the overall probability of this event happening is 𝑝4

𝐻
+ 4𝑝3

𝐻
𝑝𝐿 + 4𝑝3

𝐿
𝑝𝐻):

−
4𝑝3

𝐿
𝑝𝐻 + 1

3 · 4𝑝3
𝐻
𝑝𝐿

𝑝4
𝐻
+ 4𝑝3

𝐻
𝑝𝐿 + 4𝑝3

𝐿
𝑝𝐻
𝑠 +

𝑝4
𝐻
+ 2

3 · 4𝑝3
𝐻
𝑝𝐿

𝑝4
𝐻
+ 4𝑝3

𝐻
𝑝𝐿 + 4𝑝3

𝐿
𝑝𝐻

{
1
2
(ℎ − 𝑚) + 1

2

(
9
4 𝑝𝐻 + 4𝑝𝐿
3𝑝𝐻 + 8𝑝𝐿

(ℎ − 𝑚) −
9
2 𝑝𝐻 + 14𝑝𝐿
3𝑝𝐻 + 8𝑝𝐿

𝑠

)
−𝑠

}
< 0,
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which after combining terms yields

𝑝2
𝐻 (3𝑝𝐻 + 8𝑝𝐿)

ℎ − 𝑚
6

(
1 +

9
4 𝑝𝐻 + 4𝑝𝐿
3𝑝𝐻 + 8𝑝𝐿

)
<

(
1
3
𝑝2
𝐻 (3𝑝𝐻 + 8𝑝𝐿)

(
1 +

9
4 𝑝𝐻 + 7𝑝𝐿
3𝑝𝐻 + 8𝑝𝐿

)
+ 4𝑝𝐿

(
𝑝2
𝐿 +

1
3
𝑝2
𝐻

))
𝑠,

or

3𝑝2
𝐻

ℎ − 𝑚
24

(7𝑝𝐻 + 16𝑝𝐿) <
(
1
3
𝑝2
𝐻

(
21
4
𝑝𝐻 + 19𝑝𝐿

)
+ 4𝑝3

𝐿

)
𝑠,

or

ℎ − 𝑚
𝑠

<
42𝑝3

𝐻
+ 152𝑝2

𝐻
𝑝𝐿 + 96𝑝3

𝐿

21𝑝3
𝐻
+ 48𝑝2

𝐻
𝑝𝐿

(S.7)

Let us now do the same exercise for the first algorithm and use backward induction to
determine the pay-off for the consumer if he decides to continue to search after observing an
𝑚. So, consider that after observing an 𝑚 in the first round, the consumer observes either
𝑙𝑙, 𝑚𝑙 (or 𝑙𝑚) or 𝑚𝑚 in the subsequent two rounds.

(i) After observing 𝑙𝑙 in search rounds two and three, the consumer encounters an 𝐿 with
probability 4𝑝3

𝐿
𝑝𝐻

4𝑝3
𝐿
𝑝𝐻+2𝑝2

𝐻
𝑝2
𝐿

=
2𝑝𝐿

2𝑝𝐿+𝑝𝐻 on the last search and an 𝐻 with probability 𝑝𝐻
2𝑝𝐿+𝑝𝐻 .

(ii) After observing 𝑙𝑚 (the same analysis applies to 𝑚𝑙) in search rounds two and three,
the total ex ante probability of 𝐻𝐻𝐿𝐻 and 𝐻𝐻𝐿𝐿 is 1

3 · 4𝑝3
𝐻
𝑝𝐿+ 1

3 · 6𝑝2
𝐻
𝑝2
𝐿
, where for

example 6𝑝2
𝐻
𝑝2
𝐿

is the ex ante probability that there are two 𝐻 and two 𝐿 and in that case
(under the first algorithm) the sponsored slot is an 𝐻 and the chance that the first organic
slot contains an 𝐿 is 1/3. So the conditional probability of the last one being 𝐻, resp. 𝐿, is

4𝑝3
𝐻
𝑝𝐿

4𝑝3
𝐻
𝑝𝐿+6𝑝2

𝐻
𝑝2
𝐿

=
2𝑝𝐻

2𝑝𝐻+3𝑝𝐿 and 3𝑝𝐿
2𝑝𝐻+3𝑝𝐿 .

(iii) Finally, after observing 𝑚𝑚 in search rounds two and three, the total ex ante probability
of 𝐻𝐻𝐻𝐻 and 𝐻𝐻𝐻𝐿 is 𝑝4

𝐻
+ 1

3 · 4𝑝
3
𝐻
𝑝𝐿 so the conditional probability of the last one being

𝐻, resp. 𝐿, is 𝑝𝐻

𝑝𝐻+ 4
3 𝑝𝐿

and
4
3 𝑝𝐿

𝑝𝐻+ 4
3 𝑝𝐿

.

If the consumer continues to search in the first case, they certainly continue to search in all
other cases and this is the case if 𝑝𝐻

𝑝𝐻+2𝑝𝐿
𝑚+ℎ

2 + 2𝑝𝐿
𝑝𝐻+2𝑝𝐿𝑚 − 𝑠 > 𝑚, or 𝑝𝐻

𝑝𝐻+2𝑝𝐿
ℎ−𝑚

2 > 𝑠 or

ℎ − 𝑚
𝑠

> 2
(
1 + 2𝑝𝐿

𝑝𝐻

)
. (S.8)
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It is clear that (S.8) implies (S.4) and (S.6).

What we will do in the subsequent analysis is the following. We show that if (S.8) holds,
then the consumer wants to continue searching in all previous search rounds until they have
found an ℎ. The easiest way to do so is to show that if (S.8) holds the consumer prefers
to search in round 𝑡 even if in subsequent round 𝑡 + 1 they stop searching. As the pay-off
of continuing to search in round 𝑡 is higher than that (as the consumer actually continues
to search as this yields a higher pay-off), they certainly want to continue searching if that
higher continuation pay-off is taken into account.

With this in mind, let us then go back one period and consider that the consumer after
observing an 𝑚 in the first round either observes 𝑙 or 𝑚 in the next round.

(i) After observing 𝑙 in search round two, the consumer believes that the last two objects are ei-
ther 𝐿𝐿, 𝐻𝐿 or𝐻𝐻 and so overall, they believe the objects are either𝐻𝐿𝐻𝐻, 𝐻𝐿𝐻𝐿, 𝐻𝐿𝐿𝐻
or 𝐻𝐿𝐿𝐿 and the ex ante total probability that one of these events happens is 1

3 · 4𝑝3
𝐻
𝑝𝐿+

2
3 · 6𝑝2

𝐻
𝑝2
𝐿
+ 4𝑝𝐻 𝑝3

𝐿
.(For example, the ex ante probability that three products are 𝐻 and one

is 𝐿 is 4𝑝3
𝐻
𝑝𝐿 and out of these cases under the first algorithm the probability that the first

objects ranked is an 𝐻 and the next one is an 𝐿 is 1
3 .) Thus, the conditional probability that

the third object searched is an 𝐻 equals
1
3 ·4𝑝

3
𝐻
𝑝𝐿+ 1

3 ·6𝑝
2
𝐻
𝑝2
𝐿

1
3 ·4𝑝

3
𝐻
𝑝𝐿+ 2

3 ·6𝑝2
𝐻
𝑝2
𝐿
+4𝑝𝐻 𝑝3

𝐿

and therefore the consumer
prefers searching in round 3 even if they do not continue searching in round 4 if

1
3 · 4𝑝3

𝐻
𝑝𝐿 + 1

3 · 6𝑝2
𝐻
𝑝2
𝐿

1
3 · 4𝑝3

𝐻
𝑝𝐿 + 2

3 · 6𝑝2
𝐻
𝑝2
𝐿
+ 4𝑝𝐻 𝑝3

𝐿

ℎ − 𝑚
2

> 𝑠.

This condition can be rewritten as ℎ−𝑚
𝑠
> 22𝑝2

𝐻
+6𝑝𝐻 𝑝𝐿+6𝑝2

𝐿

2𝑝2
𝐻
+3𝑝𝐻 𝑝𝐿

= 2
(
1 + 3𝑝𝐻 𝑝𝐿+6𝑝2

𝐿

2𝑝2
𝐻
+3𝑝𝐻 𝑝𝐿

)
. The RHS

of this inequality is smaller than the RHS of (S.8) if 3𝑝𝐻+6𝑝𝐿
2𝑝𝐻+3𝑝𝐿 < 2, which is clearly the case.

(ii) After observing 𝑚 in search round two, the ex ante total probability of the first two
objects being 𝐻 equals 𝑝4

𝐻
+ 2

3 · 4𝑝3
𝐻
𝑝𝐿 + 1

3 · 6𝑝2
𝐻
𝑝2
𝐿
. Thus, the conditional probability that

the third object searched is an 𝐻 equals 𝑝4
𝐻
+ 1

3 ·4𝑝
3
𝐻
𝑝𝐿

𝑝4
𝐻
+ 2

3 ·4𝑝
3
𝐻
𝑝𝐿+ 1

3 ·6𝑝2
𝐻
𝑝2
𝐿

and therefore the consumer
prefers searching in round 3 even if they do not continue searching in round 4 if

𝑝4
𝐻
+ 1

3 · 4𝑝3
𝐻
𝑝𝐿

𝑝4
𝐻
+ 2

3 · 4𝑝3
𝐻
𝑝𝐿 + 1

3 · 6𝑝2
𝐻
𝑝2
𝐿

ℎ − 𝑚
2

> 𝑠,
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which can be written as ℎ−𝑚
𝑠

> 23𝑝2
𝐻
+8𝑝

𝐻
𝑝𝐿+6𝑝2

𝐿

3𝑝2
𝐻
+4𝑝

𝐻
𝑝𝐿

= 2
(
1 + 4𝑝

𝐻
𝑝𝐿+6𝑝2

𝐿

3𝑝2
𝐻
+4𝑝

𝐻
𝑝𝐿

)
. The RHS of this

inequality is smaller than the RHS of (S.8) if 4𝑝
𝐻
+6𝑝

𝐿

3𝑝
𝐻
+4𝑝𝐿 < 2, which again is clearly the case.

So, now we go to the first search round where the consumer observes an 𝑚. The ex ante
total probability of this state equals 𝑝4

𝐻
+ 4𝑝3

𝐻
𝑝𝐿 + 6𝑝2

𝐻
𝑝2
𝐿
+ 4𝑝𝐻 𝑝3

𝐿
. Thus, the conditional

probability that the second object searched is an 𝐻 equals 𝑝4
𝐻
+ 2

3 ·4𝑝
3
𝐻
𝑝𝐿+ 1

3 ·6𝑝
2
𝐻
𝑝2
𝐿

𝑝4
𝐻
+4𝑝3

𝐻
𝑝𝐿+6𝑝2

𝐻
𝑝2
𝐿
+4𝑝𝐻 𝑝3

𝐿

and
therefore the consumer prefers searching in round 2 even if they do not continue searching in
round 3 if

𝑝4
𝐻
+ 2

3 · 4𝑝3
𝐻
𝑝𝐿 + 1

3 · 6𝑝2
𝐻
𝑝2
𝐿

𝑝4
𝐻
+ 4𝑝3

𝐻
𝑝𝐿 + 6𝑝2

𝐻
𝑝2
𝐿
+ 4𝑝𝐻 𝑝3

𝐿

ℎ − 𝑚
2

> 𝑠,

which can be written as ℎ−𝑚
𝑠
> 2 𝑝

4
𝐻
+4𝑝3

𝐻
𝑝𝐿+6𝑝2

𝐻
𝑝2
𝐿
+4𝑝𝐻 𝑝3

𝐿

𝑝4
𝐻
+ 2

3 ·4𝑝
3
𝐻
𝑝𝐿+ 1

3 ·6𝑝2
𝐻
𝑝2
𝐿

= 2
(
1 +

1
3 ·4𝑝

3
𝐻
𝑝𝐿+ 2

3 ·6𝑝
2
𝐻
𝑝2
𝐿
+4𝑝𝐻 𝑝3

𝐿

𝑝4
𝐻
+ 2

3 ·4𝑝
3
𝐻
𝑝𝐿+ 1

3 ·6𝑝2
𝐻
𝑝2
𝐿

)
.

The RHS of this inequality is smaller than the RHS of (S.8) if
1
3 ·4𝑝

3
𝐻
+ 2

3 ·6𝑝
2
𝐻
𝑝𝐿+4𝑝𝐻 𝑝2

𝐿

𝑝3
𝐻
+ 2

3 ·4𝑝2
𝐻
𝑝𝐿+ 1

3 ·6𝑝𝐻 𝑝2
𝐿

< 2,
which again is clearly the case.

Thus, combining (S.5), (S.7) and (S.8), a sufficient condition for it to be possible that after
observing 𝑚 the consumer continues searching after the first algorithm, but not under the
second is that

2
(
1 + 2𝑝𝐿

𝑝𝐻

)
<
ℎ − 𝑚
𝑠

< min

{
42𝑝3

𝐻
+ 152𝑝2

𝐻
𝑝𝐿 + 96𝑝3

𝐿

21𝑝3
𝐻
+ 48𝑝2

𝐻
𝑝𝐿

, 2 +
4𝑝2

𝐿

𝑝2
𝐻

}
. (S.9)

As the LHS and the RHS are function of 𝑝𝐻 only (as 𝑝𝐿 = 1 − 𝑝𝐻), it is possible to choose
values of ℎ − 𝑚, 𝑠 such that both inequalities hold if there exist values of 𝑝𝐻 such that the
RHS is larger than the left hand side. Figure 3 draws ℎ−𝑚

𝑠
on the vertical axis and 𝑝𝐻 on the

horizontal axis. The term of the LHS is represented by the black curve and the two terms of
the RHS are represented by the green and red curve, respectively. It is clear that for (roughly)
𝑝𝐻 < 0.27 the black curve is below the green curve and the green curve is the constraining
factor on the RHS, reflecting the first term on the RHS. Thus, for the area in between the
black and the green curve inequality (S.9) holds.

Finally, we consider the conditions under which it is optimal to stop searching under the
second algorithm after observing an 𝑙 on the first search. (It is clear it is optimal to stop
searching after observing an 𝑙 under the first algorithm). After observing an 𝑙 under the
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Figure 3

second algorithm, the consumer knows there are either two 𝐻 products or all are 𝐿. It is
clear that after observing three 𝑙 the consumer stops searching. Also, after observing two 𝐿
(which happens with a total ex ante probability of 1

3 · 6𝑝2
𝐻
𝑝2
𝐿
+ 𝑝4

𝐿
) the consumer knows the

continuation is either 𝐿𝐿 or 𝐻𝐻 and then the consumer stops searching if

2𝑝2
𝐻

2𝑝2
𝐻
+ 𝑝2

𝐿

(
(𝑚 + ℎ

2
− 𝑠) + 1

2
( ℎ − 𝑚

2
− 𝑠)

)
+

𝑝2
𝐿

2𝑝2
𝐻
+ 𝑝2

𝐿

(𝑙 − 𝑠) < 𝑙,

or if 𝑙 ≈ 𝑚

(ℎ − 𝑚)
𝑠

< 2 +
2𝑝2

𝐿

3𝑝2
𝐻

, (S.10)

which is depicted by the beige curve in the figure.

Finally, after observing 𝑙𝑚 the consumer knows that there is still one 𝐿 and one 𝐻 option
and it is then optimal to continue to search if the 𝐻 option on the second search turned out to
be an 𝑚 if 1

2

(
1
2 (ℎ − 𝑚) − 𝑠

)
+ 1

2

(
1
2 (ℎ − 𝑚) − 2𝑠

)
> 0, which is the case if ℎ−𝑚

𝑠
> 3, which

is clearly implied by the previous conditions in the figure. (The pay-off formula follows from
the fact that with probability 1

2 the next option is an 𝐻 and then the consumer certainly stops
searching afterwards, while with the remaining probability 1

2 the next option is an 𝐿 and
then the consumer certainly continues searching).
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Thus, after observing an 𝐿 in the first position, the pay-off of continuing to search is given by

2𝑝2
𝐻
+ 𝑝2

𝐿

6𝑝2
𝐻
+ 𝑝2

𝐿

(𝑙 − 𝑠) +
4𝑝2

𝐻

6𝑝2
𝐻
+ 𝑝2

𝐿

(
1
3
(𝑙 − 𝑠) + 1

3
(ℎ − 𝑠) + 1

3
(𝑚 + 1

2
(ℎ − 𝑚) − 2

1
2
𝑠)

)
.

For 𝑙 ≈ 𝑚 this is smaller than 𝑙 if (approx.)

4𝑝2
𝐻

6𝑝2
𝐻
+ 𝑝2

𝐿

(
1
3
(𝑚 − 𝑠) + 1

3
(ℎ − 𝑠) + 1

3
(1
2
(𝑚 + ℎ) − 2

1
2
𝑠)

)
<

4𝑝2
𝐻

6𝑝2
𝐻
+ 𝑝2

𝐿

𝑚 +
2𝑝2

𝐻
+ 𝑝2

𝐿

6𝑝2
𝐻
+ 𝑝2

𝐿

𝑠,

or

4𝑝2
𝐻

6𝑝2
𝐻
+ 𝑝2

𝐿

(
−3

2
𝑠 + 1

2
(ℎ − 𝑚)

)
<

2𝑝2
𝐻
+ 𝑝2

𝐿

6𝑝2
𝐻
+ 𝑝2

𝐿

𝑠,

or

ℎ − 𝑚
𝑠

< 3 +
𝑝2
𝐿
+ 2𝑝2

𝐻

2𝑝2
𝐻

= 4 +
𝑝2
𝐿

2𝑝2
𝐻

, (S.11)

which is depicted by the blue curve in the graph.

Thus, we can conclude that there is a parameter region where the stipulated search behavior
under both algorithms is optimal at every stage, which is given by the black curve as the
lower bound and the blue curve as the upper bound. In this region, the consumer always
stops searching at the sponsored slot under the second algorithm but continues to search
after observing an 𝑚 in the sponsored slot under the first algorithm. It is clear from the
analysis that we have provided sufficient conditions for this to be the case that are by no
means necessary conditions. The total area of parameter values where the consumer always
stops searching at the sponsored slot under the second algorithm but continues to search
after observing an 𝑚 in the sponsored slot under the first algorithm is larger than the area
between the black and blue curves depicted in the figure.

S.3 Auxiliary Analysis for Heterogenous Prices

S.3.1 Auxiliary Analysis

We here provide the missing details underlying the argument in the proof of Proposition 3
(2). Specifically, we first show that if the platform runs an adjusted second-price auction
placing the firm with the highest bid in the sponsored slot and breaking ties in favor of higher
match scores, then the probability that a firm with price 𝑝∗ wins the auction approaches 1.
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Second, we argue that this auction also allows the platform to capture the entire rents of the
winning firm, thus asymptotically achieving the upper bound of profits that can be earned
form the sponsored slot.

Lemma S.2. There exists an 𝑛̄ such that firms with price 𝑝∗ bid more in equilibrium than
any firm with 𝑝 ∈ P \ {𝑝∗} and ℎ(𝑝) > 0 if 𝑛 ≥ 𝑛̄.

Proof. The expected profit difference from obtaining and not obtaining the sponsored slot is

(𝑝)
(
1 − 𝐺 (𝛾 + 𝑝 |𝜃𝑝 (𝑛, 𝐻)

)
− 1
𝑛 − 1

𝑛∑︁
𝑚=2

𝜋
(
𝑚, 𝑝, 𝜃𝑐,𝑝 (𝑛, 𝐻)

)
(S.12)

where 𝜃𝑝 (𝑛, 𝐻) denotes the expected highest match score among all firms with the price
(𝑝), given the distribution 𝐻 and 𝑛 and where 𝜋(𝑚, ·) is the profit from position 𝑚. Clearly,
firms will never bid more than (S.12). This upper bound increases in 𝜃. Thus, the most that
a firm with 𝑝 ≠ 𝑝∗ bids is

(𝑝)
(
1 − 𝐺 (𝛾 + 𝑝 |𝜃

)
− 1
𝑛 − 1

𝑛∑︁
𝑚=2

𝜋
(
𝑚, 𝑝, 𝜃

)
. (S.13)

Note that the second term vanishes in the limit because the joint profits of all firms ares
bounded. Then, by the properties of 𝐺 (·) there is a 𝜃∗ < 𝜃 such that

(𝑝) (1 − 𝐺 (𝛾 + 𝑝 |𝜃)) < (𝑝∗) (1 − 𝐺 (𝛾 + 𝑝∗ |𝜃′)) (S.14)

for all 𝑝 ∈ P \ {𝑝∗} with ℎ(𝑝) > 0, 𝜃 ∈ 𝚯 and 𝜃′ > 𝜃∗. Since, by assumption

(𝑝)
(
1 − 𝐺 (𝛾 + 𝑝 |𝜃)

)
< (𝑝∗)

(
1 − 𝐺 (𝛾 + 𝑝∗ |𝜃)

)
(S.15)

for all 𝑝 ∈ P \ {𝑝∗} with ℎ(𝑝) > 0, and because (𝑝) (1 − 𝐺 (𝛾 + 𝑝 |𝜃)) is continuous in 𝜃,
and P is finite, there is a 𝜃∗ < 𝜃 such that

(𝑝)
(
1 − 𝐺 (𝛾 + 𝑝 |𝜃)

)
< (𝑝∗) (1 − 𝐺 (𝛾 + 𝑝∗ |𝜃′) (S.16)

for all 𝑝 ∈ P \ {𝑝∗} with ℎ(𝑝) > 0, 𝜃 ∈ 𝚯 and 𝜃′ > 𝜃∗. Since the left-hand side of the
inequality above is monotonically increasing in 𝜃, inequality (S.14) follows.

Since 𝜃𝑝∗ (𝑛, 𝐻) increases in 𝑛, there is an 𝑛̄ large enough so that 𝜃𝑝∗ (𝑛, 𝐻) > 𝜃∗. Considering
(S.12) and noting that the second term vanishes, we conclude that the upper bound of what
(𝑝∗)− types are willing to bid exceeds that of other types if 𝑛 ≥ 𝑛̄. Firms with 𝑝∗ will never
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bid less than any firm with 𝑝 ≠ 𝑝∗ in any symmetric equilibrium because if not, then every
firm with type 𝑝∗ would find it profitable to raise its bid. □

Lemma S.3. In the limit, the platform earns (𝑝∗)
(
1 − 𝐺 (𝑟 + 𝑝∗ |𝜃)

)
a.s.

Proof of Lemma S.3. As 𝑛 → ∞, the probability that there are at least two firms with
cost-price pair (𝑐∗, 𝑝∗) converges to 1. By Lemma S.2, these firms with (𝑐∗, 𝑝∗) compete
only against each other asymptotically almost surely. Notably, all firms with a cost price
pair (𝑐∗, 𝑝∗) are ex ante identical as in our base model. The same argument as in the proof
of Theorem 1 then guarantees an equilibrium bid to exist, which in the limit converges
to (𝑝∗)

(
1 − 𝐺 (𝛾 + 𝑝∗ |𝜃)

)
. Since there are at least 2 bidders a. s., platform profits equal

this bid. This is equal to the upper bound on the platform’s profits, implying asymptotic
optimally. Naturally, the match score of the winning firm approaches 𝜃 as 𝑛→ ∞. □
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