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1 Introduction

Online platforms possess large amounts of data on items people have searched for. This

can be data about products, services, news or other items. Platforms also observe whether

or not consumers buy a product or service or how long a user spends on a news item

(as an indication of whether the user appreciates the item). Platforms may employ this

information to help users find items they like, but there are concerns that platforms use

this information in ways that do not (directly) benefit users. Regulators have put rules

in place to restrict the ways platforms can use the information they collect; see, e.g. the

EU’s Digital Markets Act (DMA) and the Digital Services Act (DSA).

What platforms can infer from the information they collect does not only depend on

the search behaviour of their users, but also on how they themselves rank the items. On

the one hand, if they always present the same ranking of items, users will make similar

choices, restricting the type of inferences platforms make as it is unclear whether choices

reflect “true preferences” or (mostly) the platform’s own ranking. By experimenting with

different rankings, and observing behaviour given different rankings, platforms potentially

may learn more which products users really like. On the other hand, if platforms only

provide random rankings, users will not expect to find high-value items on their next

searches and may be easily satisfied with what they are presented with. Thus, how

much platforms learn depends on users’ behaviour. However, optimal user behaviour in

turn depends on what users expect to observe on their next searches given their current

observations and their expectations regarding the platform’s ranking. This paper studies

this process of dual learning.

In particular, we analyze in this paper how and how much a platform can learn by

optimally choosing its ranking. We consider that a platform wants to learn as much

as possible about which item consumers like best in the long run. Such an objective

may be implied, for example, when a platform’s main revenue source stems from selling

information to interested parties, or from advertising. This objective is also relevant if the

platform is interested in user well-being to enlarge the market or to increase its market

share. We compare how much can be learned both in case a platform is a monopolist

and when it faces competition.

We focus on online markets where consumers search for and buy products, but the

ideas of the paper can equally be applied to news aggregators or recommendation plat-

forms. Consumers’ value for products has a common and an idiosyncratic component.

Platforms observe which products consumers inspect and buy. The platforms choose

an algorithm that maps the observed history into a ranking of products for the next

consumer. Consumers inspect products sequentially and their behaviour is characterized

by an optimal stopping rule that, because of consumer learning, may well be different

from a classic reservation value strategy (as in Weitzman, 1979). Consumers can follow
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the ranking if they like, but are free to search on the platform in any order they prefer.

Consumers sequentially arrive at the platform. Platforms do not observe the actual value

a consumer attaches to a product. They only know whether a consumer inspects a prod-

uct and whether it is bought. As each consumer only uses the platform once, platform

learning is about the common value component of consumers’ preferences.

Our main result for a monopoly platform is a characterization of the maximal amount

of learning and a construction of an algorithm that reaches this maximum. The result

shows that by experimenting with rankings on early users the platform can learn much

more about the common value of the best products than by not experimenting. We say

that a platform experiments if it consciously chooses not to provide the best possible

ranking for the current consumer using the current information.

To see what experimentation brings, consider first that the idiosyncratic component is

absent so that all consumers have the same value for products. Without experimentation,

the platform would suggest to all future consumers the item that was bought first, which

is a product that has a (common) value that is at least equal to the consumers’ ex ante

reservation value, as in Wolinsky (1986). Subsequent consumers would always buy the

same product as they expect to inspect a random product on their next search. With

experimentation, the platform can hide for a first set of consumers the products that

previous consumers have bought by randomizing their ranking. It can gradually shift to

showing consumers a ranking where products that previous consumers bought are placed

first. Doing so increases later consumers’ continuation value of search as they believe that

if they continue to search they are more likely to see products with a high value compared

to the situation where the platform does not experiment. Thus, later consumers expect

that they are not presented with a random set of products if they continue to search,

become more picky, and will reject some products that would have been acceptable if

they had expected random products on their next search.

We define a maximum threshold value under experimentation that is such that the

consumer is indifferent between immediately accepting the threshold value and continuing

to search expecting that the next item to be searched has a value that is at least as high

as the threshold value. We show that by experimenting the platform will ultimately find

items with a value larger than this threshold and all consumers immediately buy the first

item that is prominently ranked. Moreover, this threshold value is considerably larger

than consumers’ ex ante reservation value. However, for any positive inspection cost,

there is a limit to what the platform learns and not only the very best products are

ranked first. In particular, the platform learns less if the inspection cost is larger.

When there is an idiosyncratic component to consumers’ value, the larger its weight

the better the platform is able to learn which products have the highest common values.

With an idiosyncratic component, consumers have a larger incentive to search. In par-

ticular, some consumers may be unhappy with products the platform has ranked high,
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simply because they draw a low idiosyncratic component of their match value. The larger

the weight of the idiosyncratic component, the more likely consumers continue to search

themselves. For weights below a critical value, we show that it remains true that the

platform ultimately learns that a prominently placed item has a high enough common

value such that all consumers immediately buy it.

For weights above this critical value, the platform’s problem changes its character.

While at lower weights of the idiosyncratic component the platform’s main issue is to

experiment with rankings early on to be able to make later consumers more picky, at

higher weights the issue is when to keep on presenting certain items on more prominent

spots (that consumers inspect first) and when to switch to alternative items. Using ideas

from statistical hypothesis testing, we show that the platform is able to learn that a

product has a common value component that is arbitrarily close to the highest possible

value. We also show that the monopoly results are robust to consumer heterogeneity in

terms of search costs and the weight they attach to their idiosyncratic component, and

to a fraction of consumers or all of them having the option to buy blindly (i.e., without

inspecting the product first).

Our second set of results pertains to competing platforms. We show that if platforms

want to maximize the extent of learning on their own platform, competition potentially

limits the possibility for platforms to experiment, especially when consumers do not know

platforms’ market shares (or how many previous consumers have used which platform).

The reason is best understood by realizing that by experimenting, the monopoly platform

consciously trades off the benefit of present consumers in favour of future consumers.

Competition, however, implies that when they have a choice consumers prefer, ceteris

paribus, to use a platform that is not experimenting, leaving platforms that do experiment

without consumers to experiment on. Proposition 9 formalises this intuition and shows

that under competition platforms do not experiment and learn less than under monopoly.

When consumers know market shares, they know that the platform with the largest

market share is able to provide better recommendations, and prefer to use this platform

even if it experiments a bit more than others. We show that by experimenting just so

much that all consumers prefer to use the platform with the largest market share, the

platform can learn in the long run as much as under monopoly, supporting the argument

that there is a data-driven tendency for monopoly power in recommendation markets.

Competition may also come in the form of a platform entering the market after an

incumbent already has served consumers. We show that a more efficient entrant that has

created a more convenient website design where consumers have lower search costs may

not be able to gain market share, because the incumbent platform already has been able

to experiment with consumers until entry took place. Consumers may therefore prefer to

use the incumbent platform as they are more likely to get better recommendations even

if that implies that they incur higher search costs.
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Related Literature. The environment we study has important similarities and dif-

ferences with the social learning literature (Banerjee, 1992; Bikhchandani et al., 1992;

Smith and Sørensen, 2000, among others). In the classic social learning papers agents

have the same preferences and decide whether or not to make a particular choice. Apart

from their prior information, in most of these papers they also learn by directly observing

the actions of all past agents. In Kremer et al. (2014) and Glazer et al. (2021), agents

do not observe the choices of preceding agents, but a principal does and recommends

to future agents choices based on this information. In contrast to these papers, in line

with online markets, consumers in our paper can choose one out of many products and a

platform communicates its information through a ranking of these products. This type

of communication (and choice) is very different from advising a consumer whether or not

to adopt one product. Another important difference is that in our paper consumers have

to pay an inspection cost if they want to learn their value for a product and they are

not restricted to search only a limited set of products. Consumers may decide to stop

searching and buy a product simply because they believe it is “good enough” in the sense

that they do not want to inspect another unknown item at an inspection cost. If there

is information acquisition in the social learning literature, as in Glazer et al. (2021), it is

limited to one signal about one option. The fact that there are many products that are

costly to inspect impose natural limits on what a platform may learn. Finally, consumers’

(agents’) preferences include an idiosyncratic component, so that what is a good choice

for one consumer may not be a good choice for another consumer in the same situation.

Maglaras et al. (2021) studies an environment where consumers learn from reviews of

previous consumers and pay a larger “search cost” for an item that is ranked lower by

the platform. There is no real search in their model, however, as consumers simply buy

the product that maximizes their expected utility before inspecting. Goeree et al. (2006)

study an (otherwise classic social learning) environment where the agents’ utility has both

an idiosyncratic and a common part. They find that in contrast to the herding result of

the social learning literature, with an idiosyncratic component to their utility function,

agents will eventually always learn the true state of the world. In contrast, our paper

focuses on platforms trying to influence the outcome of the social learning process and

on consumers searching different alternatives. Our paper also relates to other papers on

platforms that recommend products to consumers and learn about product quality.1

The interaction between a platform’s rankings and consumer search behaviour is also

studied from an empirical angle (see, e.g., De los Santos and Koulayev, 2017; Ursu, 2018).

The main issue in that literature is how to estimate the impact of a platform’s ranking

on what consumers click on or what they buy as the ranking itself is also influenced

1A literature also exists, such as Teh and Wright (2022), Janssen and Williams (2024), Nocke and
Rey (2024), Bar Isaac and Shelegia (2025), and Janssen et al. (2023), where a firm, platform or social
influencer with some knowledge steer consumers to products, but there is no learning.
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by consumers’ search behaviour. The question in this paper, namely how a platform

may choose rankings to learn consumer preferences and how that depends on the market

structure, is not addressed in the empirical literature, however.

There are two parts of the consumer search literature this paper relates to. First,

the literature on directed and ordered search, and the effects of prominence (see, e.g.,

Weitzman, 1979; Arbatskaya, 2007; Armstrong et al., 2009; Wilson, 2010; Haan and Mor-

aga González, 2011; Rhodes, 2011; Zhou, 2011; Armstrong, 2017; Choi et al., 2018, for

early papers on these topics) focusses on the effect of prominence or search order on

prices, whereas our focus is on how platforms can use rankings to learn about consumer

preferences. Second, the literature on search and learning, initiated by Rothschild (1974)

and further developed by Benabou and Gertner (1993) and Janssen et al. (2017), among

others, characterizes optimal search behaviour when it is not characterized by a simple

reservation value rule, as in Weitzman (1979), because consumers learn when searching

about the underlying distribution of product characteristics. In our setting, the plat-

form’s ranking algorithm allows consumers to make inferences about the goodness of fit

of uninspected products on the basis of the value of the products they already observed.

There is also a rapidly growing literature on how platforms can use their knowledge

about consumers searching for keywords to create rankings that maximize their profits

(see, e.g., Anderson and Renault, 2025; Ke et al., 2022; Janssen et al., 2023). To the best

of our knowledge, our paper is the first to develop a framework analyzing how a platform

should adjust its rankings to best learn from consumer choices.

More generally, our paper relates to the literature on dynamic information design (see,

for example, Ely, 2017; Renault et al., 2017; Ely and Szydlowski, 2020; Orlov et al., 2020;

Smolin, 2021) and the strategic experimentation literature (see, e.g., Bolton and Harris,

1999; Keller et al., 2005). In Hagiu and Jullien (2011), a profit-maximizing platform

sometimes makes consumers search more than they would like (in order to influence

sellers’ behaviour), but there is no learning.

The rest of the paper is organized as follows. The next Section describes the monopoly

model, while Sections 3 and 4 state the main monopoly results and their extensions.

Section 3 also contains an example of a ranking that induces an optimal search rule that

is not characterized by a reservation value. Section 5 discusses the results on competition.

Section 6 concludes with a discussion, while proofs can be found in the Appendix.

2 The Monopoly Model

We consider a population of infinitely many consumers using a platform to search for a

product. Products are horizontally and vertically differentiated, i.e., they have features

that all consumers value in the same way (a common component) and other features that

consumers value differently (an idiosyncratic component). Thus, a consumer t’s utility
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for product j is denoted by

utj = (1− δ)vj + δmtj,

where vj is the common (“value”) component, mtj is the idiosyncratic (“match-specific”)

component and δ ∈ [0, 1] is the relative weight on the idiosyncratic component. Before

inspecting a product, the consumer is uncertain about both components of the product.

The common component vj is a random draw from the CDF G(·) with support [v, v̄],

while the idiosyncratic component mtj is a random draw from the CDF F (·) with support

[m, m̄]; vj andmtj are independently distributed. We assume that f(·) and g(·) are strictly
positive and finite over the whole support and that 1− F and 1− G are logconcave (as

is usual in the consumer search literature; see, e.g., Anderson and Renault, 1999). For

a given δ denote the (derived) distribution of utilities by Hδ(u), defined over [u, u] with

u = (1− δ)v + δm and u = (1− δ)v + δm.

The consumer has to pay an inspection (or search) cost s to observe the utility utj

that product j gives. All consumers have the same search cost s and have to inspect

the product before buying.2 The consumers choose an optimal sequential search strategy

and stop searching when the utility exceeds the value of continuing to search. To avoid

an uninteresting analysis where consumers never inspect products if the products are

randomly ordered, we take s to be small enough, i.e., s <
∫ m̄

m
(1− F (m))dm = Em−m

and s <
∫ v̄

v
(1−G(v))dv = Ev− v. We sometimes illustrate our results for m and v being

uniformly distributed on [0, 1], and for this case this implies that s < 1
2
.

Consumers arrive at the platform sequentially and we index consumers by t = 1, 2, ....

Consumers know their place in the queue. For each consumer, the platform observes

which products a consumer inspects and which product they eventually buy, but it does

not know a consumer’s utility score. Based on these observations, the platform can make

an inference about the consumer’s utility of products that are inspected and (not) bought.

For each consumer, it can create a ranking of products and this ranking may influence

the order in which consumers search. For example, if a product is bought by a previous

consumer, then the platform may (or may not) rank that product first, and a first-ranked

product may be interpreted by consumers as a product that the platform thinks they may

like. Platforms may rank the same item multiple times. Consumers know3 the ranking

algorithm the platform uses and recognizes if multiple copies of the same item have been

inserted in the ranking without inspecting them.4 They also know that other consumers

2In extensions, we consider that consumers have different search costs and have the option to buy
“blindly”, i.e., without inspecting the product first.

3If none of the platform’s users are informed about the ranking algorithm, the outcome fully depends
on consumer expectations. For example, if all consumers expect the platform to rank the products
randomly, then the platform cannot learn much. The DSA requires that platforms are transparent about
the ranking algorithm they use so that users are, in principle, able to inform themselves of the algorithm
used (see the Digital Services Act, paragraph (70), European Parliament, 2022b).

4Copies are used by the platform to restrict the number of ways consumers may learn during their
search process (see the proof of Proposition 5). Consumers may immediately recognize copies of items
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are looking for products on the platform, and that therefore the ranking of products may

be informative of what others have inspected and bought in the past. The platform aims

to find an item with as high a common component as possible in the long run (and rank

it first).5 That is, it may experiment with rankings for some finite number of consumers

without impacting the value of its objective function.

To be more precise, let products have a number n ∈ N and denote by N the set of all

subsets of N. Let S(t) ∈ N be the sequence of products that a consumer t has inspected

and by b(t) ∈ N ∪ ∅ the purchase decision of that consumer. For every consumer t the

platform chooses a ranking rt, which is a function rt : {S(τ), b(τ)}τ=t−1
τ=1 ×Z → X, where

Z is the realization of a random device and X denotes the set of product permutations

of all lengths. The overall ranking algorithm r of the platform is a sequence of those

rankings: r = {rt}∞t=1. Let vk(t) denote the common component of the kth-ranked item

in the ranking for the tth consumer. The monopoly platform’s objective is to maximise

limt→∞Ev1(t).

The timing is as follows.6 At t = 0, the platform chooses and announces its ranking

algorithm r. At t = 1, 2, ..., the algorithm generates ranking rt, consumer t arrives,

searches through ranking rt in an optimal order, follows the optimal stopping rule to buy

the highest-utility product searched or exits. Then, the next period arrives.

Define for every ranking algorithm r a dynamic process where all consumers t search

optimally, believe that all consumers 1, ..., t − 1 before them searched optimally, and

consumers’ beliefs are consistent with ranking algorithm r. Thus, one can calculate

the value of the platform’s objective function along this dynamic process. An optimal

algorithm r∗ is an algorithm that maximizes this function. Alternatively, one can define

a Perfect Bayesian Equilibrium (PBE) where the platform’s strategy is the choice of its

algorithm and consumers’ strategies are their search strategies. The above procedure

selects the platform’s optimal PBE.

2.1 Preliminary analysis: No experimentation

We say that a platform experiments in period t if it consciously does not provide the best

possible ranking for consumer t using all information available to the platform in period

t. We say that a platform does not experiment if it does not experiment in any period t.

as copies use the same link that has to be clicked.
5For convenience, we call the most prominent spot “the first spot” or “the top spot”.
6The modelling does not explicitly include prices, but one may think that price is one of the elements

that makes up the common component in consumers’ utility function. Thus, we implicitly allow prices
to differ across products. The reason we do not explicitly introduce prices is that we want to focus on
what platforms may learn from consumer choices, while if we included price-setting behaviour by firms,
the platform could potentially also learn about product characteristics from firms’ price choices. This
would complicate matters beyond what we address in this paper.

8



In this subsection, we will consider the following simple algorithm.

Definition 1. The NE ranking algorithm puts the item the last consumer has bought

prominently on the top spot and places all non-inspected products randomly on the fol-

lowing spots.

We will show that for small enough values of δ the NE ranking algorithm is the

“unique” non-experimentation algorithm. If a platform does not experiment, all items

can be divided into three categories: (i) at most one item that has been inspected by

previous consumers and never rejected, (ii) a set of items that have been inspected and

at least once rejected, and (iii) a set of uninspected items. The critical issue turns out

to be which item consumers choose to inspect if they have the choice between inspecting

a random item and an item that previously has been rejected. We show below that if δ

is small enough, they prefer to inspect a random item. Thus, the best possible ranking

for consumer t using all information available to the platform in period t is to put on the

top spot the item that consumer t − 1 bought and clearly mark rejected items so that

consumer t can skip them and inspect other items. As the platform has no information

about non-inspected items, it has to place them randomly. Thus, the NE algorithm is

unique up to permutations of the elements of different categories of items.

The NE algorithm will also be an important reference point for future analysis as (i)

it provides a benchmark for how much more the platform can learn by experimenting,

and (ii) under a strong form of competition, platforms will find it optimal to choose this

algorithm (as we will show in Section 5).

Given the common component in the consumers’ utility function, the NE algorithm

contains relevant information to consumers and consumers find it optimal to start search-

ing the product on the top spot if the platform chooses the algorithm. Define u∗
R as the

reservation utility under random search, or the ex ante reservation utility, i.e.,

u∗
R = E[max{(1− δ)v + δm, u∗

R}]− s.

If consumers decide to continue to search beyond the top spot and follow the “recommen-

dation” of the NE algorithm by inspecting items in the order they are presented (and in

Lemma 2 below we show that this is the case for small enough δ), then they effectively

search among randomly ordered items. Thus, it is clear that any consumer facing the NE

algorithm buys an item if the utility it generates is larger than or equal to u∗
R. For any

s > 0, u∗
R < ū.

Using the definition of u∗
R we can define v∗R by v∗R ≡ (u∗

R − δm)/(1 − δ) if u∗
R <

(1− δ)v̄+ δm and v∗R ≡ v̄ if u∗
R ≥ (1− δ)v̄+ δm. For an arbitrary reservation utility û (if

it exists) we can depict the situation as in Figure 1. The reservation utility is a downward

sloping line in the (v,m) space. It crosses the horizontal axis at v̂ = û−δm
1−δ

as in Figure 1
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Figure 1: Consumers accept items north-east from the thick (red) line: in the triangle
(hatched) and rectangle (dotted); s = 0.2, δ = 0.25.

if û < (1− δ)v̄+ δm. If û is a reservation utility and consumers draw a utility level above

this line, they accept. The acceptance area consists of a rectangle where the utility level

has a common component v > v̂ (where all consumers immediately buy such products)

and a triangle where the utility level has a common component v < v̂ (where only those

consumers immediately buy for whom the idiosyncratic component is large enough).

If v∗R < v̄, an implication of the NE algorithm is that the platform eventually puts

always the same product on the top spot. The first consumer buys a product A with

uA ≥ u∗
R and this product will be recommended to the second consumer. The second

(and all future consumers) will certainly buy this product after inspection if it has a

common component vA ≥ v∗R. If on the other hand, vA < v∗R, then eventually there will

be a consumer that has a low idiosyncratic component and that consumer will buy a

different product B. This product may also be eventually rejected if vB < v∗R, but if

v∗R < v̄ at some point a product with a v ≥ v∗R will be bought, all consumers thereafter

will be recommended that product, and they buy it immediately after inspection. Thus,

using the NE ranking algorithm, the platform will eventually learn that the recommended

product has a v ≥ v∗R if v∗R < v̄ and not more than that, where v∗R can also be implicitly

defined by

(1− δ)v∗R + δm = Pr(u ≥ u∗
R)E(u|u ≥ u∗

R) + Pr(u < u∗
R) ((1− δ)v∗R + δm)− s, (1)

or

v∗R =
E(u|u ≥ u∗

R)− δm

1− δ
− s

(1− δ) Pr(u ≥ u∗
R)

.

Figure 2 illustrates the cutoffs v∗R for different values of s in the case of the uniform
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Figure 2: The cutoff v∗R as a function of δ for s = 0.05 (black dotted), s = 0.1 (red
dashed), and s = 0.2 (grey dot-dashed).

distribution. For all δ below some critical value δ̂R, where δ̂R is the unique solution to

(1) with v∗R = v̄, 7 v∗R is smaller than the maximum common value of 1.

We will now argue that if δ is small enough a consumer never inspects a position

k in the ranking if they know it contains with strictly positive probability a previously

rejected item (and an uninspected item with the rest of the probability). Using Figure

1, this means that a consumer does not find it optimal to inspect items in the (red)

hatched “triangle region” as these are items that have been inspected but not bought by

some previous consumer and they would prefer to inspect a random, uninspected item

first (and there always will be those items).

To gain intuition, consider a hypothetical situation where a consumer’s reservation

utility of picking a random item from a certain subset of products equals ũ ≥ u∗
R, and

define ṽ by ṽ = (ũ− δm) /(1−δ). Suppose also that the consumer knows that the common

value of an item equals ṽ and the only uncertainty they face in inspecting this item is

the value of the idiosyncratic component. A consumer will not want to inspect this item

(with the intention of buying it) above inspecting a random item with reservation utility

ũ if (1− δ)ṽ+ δE(m)− s ≤ ũ, which is equivalent to δ (E(m)−m) ≤ s, or defining

δ̂ :=
s

E(m)−m
,

to δ ≤ δ̂.

A specific case in point arises when considering ũ = u∗
R. In that case the consumer

has always the option of inspecting a random product giving a reservation utility of

u∗
R and if δ ≤ δ̂ they prefer that to inspecting and buying a product with a common

component smaller than or equal to v∗R, i.e., a product in the “triangle region” that under

7Note that, as u∗
R is uniquely defined, δ̂R = (v̄ − u∗

R)/(v̄ −m) is also uniquely defined if v̄ ̸= m.
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the algorithm considered above is eventually rejected by a consumer. We will say that

the platform’s ranking weakly improves over time if the platform’s knowledge embedded

in the ranking for consumer t is such that (if they had a choice) consumers weakly prefer

to search in period t to searching in any period before t. Using this notion, we can state

the following Lemma.

Lemma 2. If δ < δ̂ and the platform’s ranking (weakly) improves over time, then con-

sumers prefer to inspect random products to products that have been rejected by previous

consumers.

A first implication of Lemma 2 is that a non-experimenting platform always ranks on

the top spot the only item that has been bought but not rejected in the past. A second

implication of Lemma 2 is that if δ < δ̂ a non-experimenting platform will never be able

to induce a consumer to inspect an item that with positive probability is rejected by a

previous consumer. As there are infinitely many products, a consumer can always inspect

a random product on which the platform does not have information and would prefer to

do so because of the upward potential such a product has: in contrast to a rejected item,

a random item could also have a value in the dotted rectangle area in Figure 1, whereas

if the value turns out to be such that u < u∗
R the consumer would want to continue

to search anyway. The upper bound δ̂ is such that the expected value of inspecting a

rejected item cannot be larger than u∗
R. Thus, we have the following:

Corollary 3. If δ < δ̂ a non-experimenting platform will choose the NE algorithm and

cannot learn more than that limt→∞ v1(t) ≥ v∗R.

By Lemma 2, we know that if δ < δ̂ consumers prefer inspecting random items ahead

of previously rejected items. As a result, the platform serves consumer t’s interests best

at any t by using the NE algorithm. We argued above that, if the platform uses this

algorithm, it finds an item with v ≥ v∗R and does not learn more, and that the algorithm

is unique up to inconsequential permutations of items.

If δ > δ̂, it is much more difficult to characterize the algorithm that a non-experimenting

platform will use. The reason is not only that consumers may prefer to inspect previ-

ously rejected items ahead of random items (depending on how many times they have

been rejected), but also that the platform does not observe the consumers’ utilty levels.

The latter becomes especially cumbersome if consumers’ optimal search strategy is not

characterized by a reservation value as in that case an item may be rejected by a con-

sumer even though items with lower utility levels would have been accepted; see the next

section for an example. In that case it is difficult to characterize for any period t the

platform’s posterior value of an item and therefore the best possible ranking for consumer

t that uses all the information available to the platform in period t.
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3 Results under Monopoly: δ = 0

To show how experimentation may help the platform to learn more and to demonstrate

the complexities that may arise due to consumer learning, this section first focusses on

the simplest case where δ = 0 (which implies u = v).

Consumer learning may potentially complicate the analysis as optimal search strate-

gies may not be characterized by a reservation value as the following example illustrates.

The key to the example is the following. Very early consumers must have a reservation

value strategy as they search among random items if they do not accept the first item.

However, if later consumers do not know whether a platform is randomizing its ranking or

not, observing a v that is smaller than the reservation value of a previous consumer makes

it more likely that the platform is experimenting, while observing a v that is above the

previous reservation makes it more likely that the platform is not experimenting. As the

continuation value of search is not independent of the current observation, a reservation

value strategy may fail to exist.

Example (No reservation value strategy). Consider the following algorithm: (i) for con-

sumers t = 1, 2, 3, 4 rank all items randomly; (ii) for consumer t = 5 (6) rank the items

consumers t = 1, 2 (t = 3, 4) bought in a random order on the two top spots, followed by

a random ranking of all other items, and (iii) for consumer t = 7 with probability ρ rank

items randomly, while with probability 1− ρ rank the items consumers t = 5, 6 bought in

a random order on the two top spots, followed by a random ranking of all other items.

It is clear that consumers t = 1, 2, 3, 4 use the cutoff v∗R and that consumers t = 5, 6

also use a cutoff strategy for their first and second search, but with v̂ > v∗R for their first

search (and v∗R for their second), where

v̂ =
[1− F (v̂)]E(v|v ≥ v̂)

1− F (v∗R)
+

[F (v̂)− F (v∗R)] v̂

1− F (v∗R)
− s, (2)

and the RHS expresses the continuation value of search. We will argue that one can

choose ρ such that consumer 7 stops searching if they first inspect an item with v = v̂− ε

(i.e., just below the first cutoff of consumers 5 and 6) and that they continue searching if

they inspect an item with v = v̂ + ε.

The main step in the argument is to realize that for all ρ ∈ (0, 1) the continuation

value of search after observing v = v̂ + ε is strictly larger than the continuation value

of search after observing v = v̂ − ε.8 The reason is that, conditional on the platform not

randomizing its ranking, the only possibility for consumer 7 to observe a v < v̂ on their

first search is that at least one of consumers 5 and 6 was presented with two items in

the top positions that have v ∈ [v∗R, v̂). On the other hand, and again conditional on the

platform not randomizing its ranking, consumer 7 can observe a v > v̂ on their first search

8The formal proof of these statements is in the Appendix.
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either because one of consumers 5 and 6 encountered this item on their first search and

immediately stopped searching, or that they first inspected another item with v ∈ [v∗R, v̂).

Thus, after observing v = v̂ + ε consumer 7 believes it is more likely the platform is not

randomizing its ranking than after observing v = v̂ − ε and becomes more optimistic to

observe a high v on their next search. Together with the facts that (i) if ρ is close to 0

consumer 7 will always want to continue searching independent of observing v = v̂ − ε

or v = v̂ + ε, while (ii) if ρ is close to 1 consumer 7 will always stop searching after

observing v = v̂ − ε and v = v̂ + ε, this implies that the optimal strategy of consumer 7

is not a reservation value strategy.

To get around these intricacies related to consumer learning, define for any s > 0 a

value v∗ such that

v∗(0) = E(v|v ≥ v∗(0))− s.

In words, for δ = 0 the value v∗(0) is such that the consumer is indifferent between (i)

accepting an item with v∗(0) and (ii) continuing to search and paying the search cost,

knowing that the next item is at least as good as v∗(0). Note the important difference

with the definition of v∗R when setting δ = 0 and realizing that then u = v in (1). In (1),

the next-searched item is randomly selected, so there is a positive probability that the

next-searched item has a low v; here, the consumer expects that the next-searched item

has a v ≥ v∗(0). The next proposition (i) states that the platform can never learn more

than v∗(0), and (ii) delivers an algorithm that in the long-run ensures that the platform

finds at least one item with v ≥ v∗(0).

Proposition 4. If δ = 0, there exists an algorithm that achieves that limt→∞v1(t) ≥ v∗(0)

and this algorithm maximizes the platform’s objective function.

That the platform cannot learn more than that the v1 in the top spot is larger than

or equal to v∗(0) follows from the fact that all consumers t = 1, 2, ... will always accept

and buy any v ≥ v∗(0). That there exists an algorithm that achieves this amount of

learning is proved by constructing an algorithm that simplifies consumer learning. The

algorithm implies that the consumers’ optimal strategies use reservation values and that

these reservation values (weakly) increase most of the time. In particular, in the proof we

propose an algorithm that divides consumers in cohorts of size K > 2.9 The first cohort

of consumers will get a ranking where all (infinitely many) products are ranked randomly.

The platform collects all the items that have been bought and the second cohort gets to

see a ranking where these K products are placed on the top spots (and each item gets

the top spot once). The platform treats all subsequent cohorts in a similar way as long

as at least two different items are never rejected. If less than two never-rejected items

remain, then the platform restarts the process. The platform indicates when the process

9The proof of Proposition 4 is a special case of the proof of Proposition 5 and therefore omitted.
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Figure 3: The value to consumers of having (relative to not having) a platform as a
function of s; δ = 0.

was restarted last by communicating the cohort j when the process was last restarted:

the never-rejected items in a consumer’s ranking are followed by j positions filled by

copies of a randomly drawn uninspected item (that are recognized by consumers and not

inspected).10

The proof shows that until the process is restarted consumers in subsequent cohorts

become more picky over time and, because 1−G(v∗(0)) > 0 for any s > 0, eventually two

items with a v ≥ v∗(0) are found. Interestingly, the platform is not able to learn that only

one item has a v ≥ v∗(0): the platform can only learn so much if consumers (rationally)

expect that if they continue to search another item, it also has a value v ≥ v∗(0).

To see how much consumers benefit in the search market from a platform that aims

to learn as much as possible, we compare the value v∗(0) with the standard consumer

search problem in the absence of a platform where the products to be inspected next

are randomly drawn. In the latter case the threshold value v∗R that is acceptable for

consumers is given by s =
∫ v̄

v∗R
(1−G(v))dv. For the uniform distribution, v∗R = 1−

√
2s and

v∗(0) = 1− 2s. Figure 3 depicts (1−2s)−(1−
√
2s)

1−
√
2s

, which is the difference in expected utility

due to the platform’s ranking algorithm relative to the expected utility the consumer gets

without the platform. From the Figure it is easy to see that the larger the search cost,

the larger the benefit to the consumer, but that even at relatively low inspection costs of

say 0.05 consumers benefit around 31.6%.

4 General Monopoly Results: δ > 0

For δ > 0 we have to redefine and replace v∗(0) by v∗ by acknowledging that there is a

difference between u and v, while keeping the idea that when continuing to search, the

10If K is large and v∗(0) not too close to v̄, then the number of times that the process is restarted is
likely to be zero or a very small number.
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consumer pays the search cost and expects that the next item is at least as good as v∗. The

minimum possible utility level a consumer gets by accepting a product with a common

value of v∗ is given by (1 − δ)v∗ + δm. If a consumer drawing this utility level expects

that on their next search they observe a product that has a common component that is

at least as large as v∗, the consumer is indifferent between buying now and continuing to

search if

(1− δ)v∗ + δm = (1− δ)E(v|v ≥ v∗) + δEm− s. (3)

This is the generalized definition of v∗ we will use in this section. If δ > 0 there are two

cases to be considered, however: (i) if δ < δ̂, then there exists an interior v∗ < v̄ that

solves (3), while (ii) if δ ≥ δ̂, then we define v∗ = v̄. As the platform faces very different

issues in these two cases, we treat them separately in the next two subsections.

4.1 An Interior Solution: 0 < δ < δ̂

When δ is small enough, the results of the previous section essentially generalize, with

v∗ replacing v∗(0). The main difference with the previous section is that now different

consumers would make different choices whether to buy or continue to search in the

same environment as the idiosyncratic component of their value for a product may differ.

Nevertheless, the same algorithm will bring the platform maximal learning:

Proposition 5. If δ < δ̂, there exists an algorithm that achieves that limt→∞v1(t) ≥ v∗

and this algorithm maximizes the platform’s objective function, where the unique cutoff

v∗ is implicitly defined by ∫ v̄

v∗

1−G(v)

1−G(v∗)
dv =

s− δ(Em−m)

1− δ
. (4)

The cutoff v∗ strictly increases in δ, decreases in s, and exceeds v∗R.

The comparative statics with respect to s and δ are interesting, but intuitive. When s

is larger, consumers are less inclined to inspect products beyond the top spot. This limits

the possibility for the platform to learn from consumer choices and, as in the previous

section, v∗ decreases in s. On the other hand, when δ is larger, consumers tend to have

more dissimilar tastes and therefore the probability that consumers are satisfied with

the product that is placed on the top spot is smaller. This implies that consumers are

more inclined to search, making it easier for the platform to discern products with really

high values of v. If the weight on the idiosyncratic component of the utility function

δ increases, or s decreases, then δ becomes equal to δ̂ and the platform’s incentive to

experiment vanishes, as we will see in the next subsection.

Note that by finding products with a common value that exceeds v∗ and placing these

prominently in the ranking, the platform not only maximizes the amount it learns, but
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implicitly also the long-run consumer utility of using the platform. Consumers not only

get the highest common value they can ever expect to see on the platform, they also

economize on search cost. If consumer utility is positively correlated with the platform’s

other revenue streams, this re-interpretation of the platform’s objective provides another

rationale for using it.

It is also interesting to observe that the platform would actually not be able to learn

more than what is characterized in the Proposition even if its communication to consumers

is not restricted to what can be communicated though an algorithm. In particular,

the platform knows which items have been searched by which consumers and in which

sequence, but this information cannot be fully communicated by a ranking. However, as

items with a v ≥ v∗ will always be accepted by any consumer, the platform will not be

able to learn more even if it could communicate more.

To illustrate how much more the platform can learn by experimenting, it is useful to

consider that v and m are uniformly distributed on [0, 1]. In this case (3) can be explicitly

solved to give

v∗ = 1 +
δ − 2s

1− δ
.

The solution is smaller than 1 for δ
2
< s < 1

2
, while for s < δ

2
there is no interior solution.

Solving (1) for uniform v and m gives

v∗R =
(2− δ)−

√
8(1− δ)s− 1

3
δ2

2(1− δ)
.

For example, for s = 0.05 and δ = δ̂ = 2s, the experimenting platform learns 38.1% more

than a nonexperimenting platform. We later illustrate these cutoffs in Figure 4.

Consumer heterogeneity in s and δ. It is easy to see how our analysis generalizes to

consumers having different search costs and weights that they attach to the idiosyncratic

component. In particular, suppose that the search costs are distributed over an interval

[sL, sH ], with sL > 0, the relative weight δ is distributed over an interval [δL, δH ] with

δL > 0, s and δ are independently distributed from each other, and the platform does

not know a consumer’s values of these parameters.

If consumers have different search costs and utility weights, they also have different

cutoff values v∗t . For a consumer t with (s, δ) = (st, δt), equation (3) now becomes

(1− δt)v
∗
t + δtm = (1− δt)E(v|v ≥ v∗t ) + δtEm− st, (5)

and we write v∗t (st, δt) for the common value that makes a consumer (st, δt) who observes

the lowest value of the idiosyncratic component indifferent between buying and continuing

to search if they expect to see an item with a higher common value on their next search.
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We have shown above that if δ < δ̂ the cutoff value v∗ is interior, decreases in s and

increases in δ. Translating that result to the context of heterogeneous s and δ, it is clear

that consumers with lower s and higher δ have larger values of v∗t , with the largest v∗t (st, δt)

being v∗t (sL, δH). As the platform mainly learns when items are rejected, and items with

a v < v∗t (sL, δH) eventually will be rejected, it follows that the platform’s maximization

problem has an interior solution if δH ≤ δ̂L := sL
E(m)−m

:

Corollary 6. If consumers differ in their search cost s and their relative weight on the

idiosyncratic component δ, then if δH ≤ δ̂L, the platform can learn that limt→∞v1(t) ≥ v∗H ,

where v∗H < v̄ solves ∫ v̄

v∗H

1−G(v)

1−G(v∗)
dv =

sL − δH(Em−m)

1− δH
.

4.2 The Boundary Solution: δ > δ̂

When δ ≥ δ̂, there is no interior solution to (3). We analyze this situation in two steps.

First, we consider that (1) also does not have an interior solution for v∗R, which is the

case for δ > δ̂R.
11 In this case, there is no item such that all consumers accept it given

that they expect to find a random item on their next search. Second, we consider the

intermediate case where δ̂R > δ > δ̂.

If δ > δ̂R, then the platform does not need to induce consumers to search more by

presenting them with good items on their next search. This is because all items are such

that some consumers will not buy them as they prefer to continue searching even if they

expect to find a random item on their next search. Thus, the platform does not need to

experiment to make consumers reject items. Instead, the platform can in principle observe

the fraction of consumers that reject an item to make an inference about the common

value of the item as, with a random continuation value of search, an item with a common

value v will be rejected with a probability F
(

u∗
R−(1−δ)v

δ

)
, which as u∗

R > (1 − δ)v̄ + δm

is positive for all v and decreasing in v.

If δ > δ̂R, the platform’s problem has features of a standard statistical inference

problem, like tossing a coin to see whether it is fair. There are, however, two fundamental

differences. First, the platform wants to select an alternative with a v as close as possible

to v̄ and therefore has not only to decide whether a particular item is likely to be good

enough, but also when to switch and try out other items if items tried so far are likely

not close to v̄. Second, it is not optimal for the platform to decide once and for all based

on a finite sample of T consumers. In a standard statistical inference problem there is a

given size of the sample selected, but here the platform will always learn more as more

consumers use it. Thus, what is likely a good item based on the choices made by the first

11Note that δ̂R > δ̂ follows from u∗
R < u∗.
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T consumers may not be a good item based on the choices of the first 2T consumers.

The proof of Proposition 7 below shows that in the long run the platform is able to find

an item with a common value v close to v̄ with a probability close to 1.

If δ̂R > δ > δ̂, then (1) has an interior solution for v∗R, but (3) does not have an interior

solution for v∗. Given that for δ > δ̂R the platform does not learn v̄ exactly, the platform’s

problem in case δ̂R > δ > δ̂ is actually closer in spirit to the one analyzed in the previous

subsection (i.e., when there is an interior solution for v∗). In particular, the platform can

use the same algorithm as in Proposition 5 for the first cohorts of consumers to make

consumers more picky and not just accept to buy items with v ≥ v∗R. When a cohort is

reached whose critical cutoff value û would be larger than (1 − δ)v̄ + δm, the platform

may dilute the continuation value of search by invoking enough randomly selected, so far

uninspected, items, to make consumers in this cohort willing to accept all items with a

common value close to v̄.

We summarize the above discussion as follows.12

Proposition 7. If δ > δ̂, there exists an algorithm such that for every η, τ > 0 the

probability that limt→∞v1(t) ≥ v̄− η is at least 1− τ.

Note that unlike when there is an interior solution (and δ < δ̂), the platform does not

maximize long-run consumer utility of using the platform when δ > δ̂ by learning that

the common value of a product is close to v̄ and placing this item on the top spot. The

reason is that, as consumers reject all items with positive probability, consumers would

benefit if an infinite number of items with a common value of v̄ are placed in top positions

in case they draw a low value of the idiosyncratic component for many top-ranked items.

As explained above, however, the platform will be able to find a few items with a large

common value, but even in the long run cannot find an infinite number of such items.

Figure 4 summarizes the discussion in this section so far by illustrating (for v and m

being uniformly distributed on [0, 1]) that by experimenting with rankings the monopolist

can learn considerably more than a non-experimenting monopolist.

4.3 Blind Buying

We now consider how our results are affected if consumers can buy a product without

inspecting it (as they may trust the platform’s “recommendation”) and the platform

cannot observe whether or not consumers inspected the product, i.e., the platform can

only observe whether consumers buy a product and make inferences about the consumers’

optimal inspection behaviour. We refer to buying without inspecting as “blind buying”.13

12If consumers differ in their values for s and δ, and for at least some consumers (5) does not have an

interior solution, i.e., in the notation introduced in the previous subsection we have δH > δ̂L, then we
can prove the same proposition using the algorithm outlined in the proof.

13Doval (2018) studies blind buying in the environment of Weitzman (1979).
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Figure 4: The cutoffs v∗ (red solid) and v∗R (grey dot-dashed) as a function of δ for
s = 0.2.

If the platform only observes that consumers bought a product, but does not know

whether they inspected the product (or believes that they have not), then it does not

learn from the consumers’ choice. Clearly, if consumers have the option of blind buying

the platform cannot learn more than what we have considered so far. However, if only a

fraction of consumers consider blind buying, while another fraction always inspects before

buying (as we previously assumed all consumers would do), then the previous analysis

remains valid. What matters is that eventually some consumers inspect products and

they continue to search if products yield a utility level that is too low.

In the remainder of this subsection we suppose that all consumers consider buying

blindly, but do so only when it is rational to do so. To this end, for every δ > 0 define

by ŝR(δ) the largest search cost such that u∗
R = (1 − δ)v̄ + δm, i.e., this is the largest

search cost such that v∗R = v̄. For s < ŝR(δ), in Figure 1 only the “triangle” region exists

and the expected utility of searching over randomly ordered items is u∗
R > (1− δ)v̄+ δm.

For all δ > 0, let m∗
R(s) satisfy (1 − δ)v̄ + δm∗

R(s) = u∗
R. Note that m∗

R(s = 0) = m̄,

m∗
R(s = ŝR(δ)) = m, and m∗

R(s) strictly decreases in s.

The highest expected utility that consumers can potentially get by buying blindly is

(1 − δ)v̄ + δE(m). Conversely, by inspecting consumers can always ensure a utility of

u∗
R because they can always ignore the platform’s ranking and sample items in a random

order. Thus, inspecting is certainly better than buying blindly for all consumers t ≥ 1 if

(1− δ)v̄ + δE(m) < (1− δ)v̄ + δm∗
R(s)− s,

or

δE(m) + s < δm∗
R(s).

At s = 0, the inequality holds. At s = ŝR(δ), the inequality becomes δE(m)+ ŝR(δ) < δm
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which does not hold. Since m∗
R decreases in s, a unique s̄(δ) < ŝR(δ) exists such that

δE(m) + s̄(δ) = δm∗
R(s̄(δ)) and the inequality holds for all s < s̄(δ). Thus, for any

s < s̄(δ), all consumers inspect and we can apply Proposition 7 to show that the platform

learns a product has a v close to v̄.

Proposition 8 states this result more formally and also that for intermediate values of

s the platform may learn strictly more than the cutoff v∗R, but never as much as v∗.

Proposition 8. (i) For any δ > 0 if s < s̄(δ), then an algorithm exists that for every

η, τ > 0 achieves that the probability that limt→∞v1(t) ≥ v̄− η is at least 1 − τ. (ii) If δ

is small enough, s̃(δ) > ŝR(δ) exists such that for all s ∈ (ŝR(δ), s̃(δ)) an algorithm exists

that achieves that limt→∞v1(t) ≥ v̂ with v∗R < v̂ ≤ v∗. If v∗ < v̄, the platform is never

able to learn limt→∞v1(t) ≥ v∗.

The second part of Proposition 8 states that if, as in subsection 4.1, the maximal the

platform can learn is v∗ < v̄ it may still be able to learn more than v∗R if δ is small and s

is not too large. This is best explained by considering that δ = 0 and s > 0 = ŝR(0), but

small, so that v∗R < v̄. As by blind buying the first consumer gets a pay-off of Ev, while

by inspecting they are able to get v∗R (with v∗R being close to v̄ for s → 0) it is clear that

for small enough search costs they will choose to inspect. Later consumers would prefer

to buy blindly if they expected the platform to prominently rank the product that the first

consumer bought. But the platform can learn more in the long run by ranking products

randomly for a first cohort of consumers and then ranking the products bought by them

highly for a next cohort of consumers, etc (as in the algorithm used in Proposition 5). This

is easy to see for the uniform distribution. In that case, by inspecting items consumers

in the second cohort can use the cutoff v̂2 defined by

v̂2 =
1 + v̂2

2

1− v̂2
1− v∗R

+ v̂2
v̂2 − v∗R
1− v∗R

− s.

The RHS of this expression is the expected value 1+v̂2
2

of the next item searched if it has a

value larger than the cutoff v̂2 times the conditional probability the item has a higher value

than v̂2 plus the conditional probability the item has a smaller value than v̂2 times the

pay-off of continuing to search, which is v̂2 minus the search cost. This can be explicitly

solved as v̂2 = 1−
√
2(1− v∗R)s. If, on the other hand, these consumers buy blindly they

settle for E(u|u ≥ u∗
R) =

1+v∗R
2

. As in case of the uniform distribution v∗R = 1 −
√
2s,

inspecting yields a higher pay-off if 1 −
√
2s
√
2s > 1 − 1

2

√
2s, or s <

(
1
2

)8
. Thus, even

if they can buy blindly these consumers strictly prefer not to do so for sufficiently small

search costs and the platform is able to learn more than that an item has a v ≥ v∗R
if v∗R < v̄. By continuity a similar argument continues to hold if δ is a small positive

number. The proof shows that this continues to be true for other distribution functions.

Finally, a simple argument shows that v̂ < v∗ if v∗ < v̄. Recall that v∗ is such that
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u∗ = (1−δ)v∗+δm and all items are accepted in the long run. The cutoff v∗ is the highest

possible cutoff that can be reached when blind buying is allowed because the platform

can learn weakly less. Suppose then that the cutoff v∗ is supposed to be reached and

consider a T that is so large that the platform knows that certain items have a common

value above a number that is slightly smaller than v∗. Then consumers t > T expect to

get a utility (almost) equal to E(u|u > u∗) − s when inspecting, whereas they expect

to get (almost) E(u|u > u∗) by buying blindly. As a result, all consumers t > T , i.e.,

sufficiently far in the queue, prefer to buy blindly. Thus, the platform learns strictly less

than when consumers cannot buy blindly.

5 Competition

Finally, we consider markets where platforms are competing with each other for consumers

and ask to what extent the results under monopoly continue to hold. In particular, we

ask whether platforms are able to learn to the same extent as under monopoly.

An important part of the analysis under monopoly is that the platform can experiment

with different rankings to learn consumer choices for a variety of rankings. Experimen-

tation implies that the utility of early consumers is sacrificed to the benefit of later

consumers. This is easiest seen by considering the second consumer using the platform.

If the first consumer bought a particular product (whether or not it is the first-inspected

product), then the platform gets positive information about the common value of that

product and if it wants to serve the second consumer best, it will place that product on

the top spot. However, doing so limits the scope of learning from the choices that the

second consumer makes and a monopoly interested in what it can learn in the long run

wants to hide the product bought by the first consumer from the second consumer.

Competition limits, however, the extent to which platforms can experiment with rank-

ings as consumers only care about their own utility and not about the utility of future

consumers. Accordingly, early consumers will avoid using a platform that they expect

experiments most as they know this is not to their own advantage. Obviously, without

further regulation, if consumers are not using the platform, it cannot learn from them

either. Note, however, that EU regulation in the DMA attempts to enforce exactly that

other platforms are able to use consumer search data from other (dominant) platforms.14

Below we will discuss the importance of this regulation in more detail.

To study the implications of competition in the absence of regulation, we extend the

monopoly model in the following way. First, at stage 0 platforms i, i = 1, 2, simultane-

14It states “[g]atekeepers should therefore be required to provide access, on fair, reasonable and non-
discriminatory terms, to those ranking, query, click and view data in relation to free and paid search
generated by consumers on online search engines to other undertakings providing such services, so that
those third-party undertakings can optimise their services and contest the relevant core platform ser-
vices.”(European Parliament, 2022a, DMA, paragraph (61)).
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ously choose how to rank products in every period, i.e., they choose ri = {rit}∞t=1. Note

that as a platform’s ranking depends on consumers’ past choices and the platform also

observes whether a consumer has used its platform or not, rit may depend on which of

the consumers 1, ..., t − 1 have used the platform. Second, consumers enter sequentially

and choose which platform to use for their search, which products to inspect, and which

of the inspected products to buy. Consumers know the platforms’ algorithms and sin-

gle home (potentially because of switching costs).15 Thus, an individual consumer’s full

search process takes place on the platform of their initial choice. As under monopoly,

consumers do not observe previous consumers’ behaviour on any of the platforms. Third,

each platform aims to offer consumers that buy on it a first-ranked item with as high a

common component as possible in the long run. More formally, platform i’s objective is

to maximise

limt→∞πi
tv

i
1(t),

where πi
t denotes the probability consumer t buys on platform i and vi1(t) is the common

component of the first-ranked item in platform i’s ranking for the tth consumer.

The competition result below depends on whether consumers know which platform

previous consumers have used (or some usage statistic, such as market shares). To ease

discussion we distinguish between consumers not knowing and knowing the market shares.

If consumers do not know market shares, then competition severely limits the extent

to which platforms can learn about the common value of items. In particular, platforms

cannot do better than under the no experimentation algorithm introduced in subsection

2.1. The reason is that the only information consumers have before deciding which

platform to use is their knowledge of the algorithms. They will rationally decide to

use the platform that is experimenting less. Thus, competing platforms choose the NE

algorithm. Interestingly, this is true even though the platforms know market shares

(or previous consumers’ choices): even though a platform’s algorithm may, in principle,

experiment more when the platform has a larger market share than its competitor, the

platform will be “undercut” by the competitor if it actually does so. We prove this result

for v∗ being interior. For larger values of δ, the analysis is more complicated as it is

unclear whether competition allows platforms to keep items long enough on the top spot

to learn that their v is close to v.

The situation is different if consumers know market shares. Now consumers have

access to two sources of information when deciding which platform to use: the platforms’

algorithms and market shares. If platforms use the same algorithms, but one has a larger

15This captures in the most simple way one of the implications of the EU’s DSA (cf., footnote 4). In
the unlikely event that none of the consumers knows anything about the platforms’ choice of r, there is
no competition between platforms and the results of Section 3 apply. Thus, to the extent that the DSA
informs consumers of platforms’ ranking algorithms, this section may be viewed as an evaluation of the
possible effects of the DSA in markets with competing platforms.
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market share, then consumers are better off using the platform with the largest market

share. For example, if both platforms use the NE algorithm and one platform has had T

users and the other T ′ < T users in the past, then it is more likely that the platform with

T users “recommends” a product with v ≥ v∗R on the top spot (simply because it has

had more consumer inspecting products). The platform with a higher market share has

a competitive advantage and consumers will continue choosing it even if it experiments

more than its competitor. Once a platform has more users than the other, it can build

up its advantage, and eventually become a data-driven monopolist, learning the same

amount as the monopoly platform.

Thus, we have the following proposition.16

Proposition 9. (i) If δ < δ̂ and consumers do not know market shares, then under

competition limt→∞vi1(t) ≥ v∗R, which is strictly smaller than under monopoly. (ii) If, on

the other hand, consumers know market shares, then limt→∞vi1(t) ≥ v∗ and a platform

learns as much under competition as under monopoly.

The EU’s DMA intends to prevent the second part of the proposition from happening

by allowing firms with smaller market shares to learn from the data that consumers

generate on a dominant competing platform. Our analysis suggests, however, that the

devil is in the details. The consumer search data is only useful if the ranking of items

is known for each particular search query. Aggregate data is much less useful for other

platforms to learn to the same extent. Moreover, if consumers believe that the larger

platform is still at least marginally better, they will continue using that platform.

5.1 Asymmetric Competition: Incumbent and Entrant

We finally explore a different form of competition, namely, between an incumbent and a

more efficient entrant and ask how much more efficient than the incumbent should the

entrant be to attract consumers to its platform. We measure efficiency by how easily

consumers can navigate a platform’s website and find out information about products.

Thus, the incumbent’s efficiency is measured by the consumers’ search cost on its plat-

form, sI , and the entrant’s efficiency by sE. As the incumbent has already learned about

consumer preferences, while the entrant has not, the only interesting case is sE < sI .

Consider that the incumbent has been in the market long enough so that it ranks items

with v ≥ v∗(sI) first. Then a consumer’s expected utility of searching on the incumbent

platform is u∗(sI) = (1− δ)E(v|v ≥ v∗(sI)) + δEm− sI = (1− δ)v∗(sI) + δm. The first

consumer on the entrant’s platform has an expected utility of u∗
R(sE) = (1−δ)v∗R(sE)+δm

because the entrant has not observed any choices to learn from. Thus, the consumer

16Results showing that our competition result is robust to similar extenions (on hetereogeneous con-
sumers and blind buying) as we considered in the previous section are available on request.
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prefers to use the entrant’s platform iff u∗
R(sE) > u∗(sI). The formal result below then

follows directly from Proposition 5 and the facts that (i) for the same s an interior

monopoly cutoff v∗ satisfies v∗(s) > v∗R(s) and (ii) both cutoffs decrease in s.

Corollary 10. For any sI > sE > 0 there exists ∆(sI , sE) > 0 such that the entrant can

enter the market only if sE
sI

< ∆(sI , sE).

For general distribution functions F and G, it is difficult to determine exactly how

large the efficiency gains of the entrant should be for it to be able to enter the market.

However, for specific distributions, it is easy to see that the efficiency gains may need to

be very large for entry to take place. To see this, define sE
sI

as the measure of inefficiency of

the entrant relative to the incumbent: if the entrant is maximally efficient (i.e., sE = 0),

the measure is zero and if the entrant has no efficiency advantage, the measure is one.

Then, if v and m are uniformly distributed on [0, 1], and considering v∗R(sE) and v∗(sI)

to be interior, the expected utility is higher on the entrant platform if

v∗R(sE) =
(2− δ)−

√
8(1− δ)sE − 1

3
δ2

2(1− δ)
> 1 +

δ − 2sI
1− δ

= v∗(sI),

or
sE
sI

<
2sI +

δ2

6sI
− δ

1− δ
.

For δ = 0, this inequality reduces to sE
sI

< 2sI . For a relatively inefficient incumbent

with an sI being equal to 0.1 this requires the entrant to be 5 times more efficient. For

a more efficient incumbent, the entrant needs to be increasingly more efficient.

6 Discussion and Conclusion

This paper asks to what extent online platforms may learn how consumers value products

on the basis of observing the consumers’ search and purchase behavior. Importantly, this

potentially is an environment of dual learning as, depending on the platforms’ ranking

algorithms, consumers may also learn on the basis of the utility of inspected items what

the value of not-yet-inspected items is. A monopoly platform that cares about learning

in the long run will experiment with product rankings and eventually prominently rank

only products that early consumers have bought. This benefits consumers in the search

market as they will only accept to buy products that are strictly better than if their next

search was a random item. In this paper, we have not emphasized the welfare properties of

experimentation as the platform may use their knowledge regarding consumer preferences

in other markets where consumers (or advertisers) are harmed. These other markets are

not explicitly modelled in this paper.
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Competition between platforms may severely limit the ability of platforms to learn

if consumers do not know which platform previous consumers have used. If consumers

do have access to this information, for example in the form of platforms’ market shares,

then consumers prefer to use the platform with the largest market share, allowing it to

experiment to some extent without losing consumers to its competitors. This will lead

to a user (data) driven monopoly with the same long-run ability to learn.

In order to focus on learning from consumer search behaviour, we have treated firm

behaviour as exogenous throughout the paper. An interesting next step in the analysis is

to endogenize firm behaviour, for example, by endogenizing pricing decisions or allowing

firms to have some information about consumer values that they could signal in their

price-setting behavior. Another interesting avenue for future research is to allow products

to differ vertically and consumers to differ in their value for quality. Will this give rise to

echo chambers where some platforms cater to consumers with a high willingness to pay

for quality and other platforms that do not? Finally, where the current paper focuses on

what platforms may learn from observing the search and purchase behaviour of different

consumers, platforms may also be able to learn about individual characteristics on the

basis of consumers repeatedly using the same platform for different search queries. We

see our paper as making a start with investigating what platforms may learn by creating

rankings. There are many directions that can be taken from here.

7 Appendix: proofs

Proof of Lemma 2.

The proof is by induction. As with a non-experimenting platform consumers 1 and 2 face

a fully random ranking and a fully random ranking after the top spot respectively, we start

by considering consumer 3. Clearly the best item to place on the top spot for consumer

3 is the item bought by consumer 2. There is a positive probability that consumer 2

rejected the item that was placed on the top spot for them and bought another item.

Thus, there is a positive probability that for consumer 3 the platform has a choice which

item to place after the top spot. Suppose the ranking is such that the platform puts the

item that was bought by consumer 1 and not bought by consumer 2 on the second spot.

After having rejected the item of the top spot, will consumer 3 inspect that item or will

the consumer prefer to skip that item and continue to inspect random items?

Inspecting random items yields an expected utility of u∗
R as the consumer can always

continue to inspect other random items if the first items turn out to generate a utility

u < u∗
R. Inspecting a rejected item instead (after having rejected the top-spot item, and
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not coming back to the item in the top spot) yields an expected utility of

Pr (u ≥ u∗
R |v ∈ [v̇, v∗R] )E(u|u ≥ u∗

R, v ∈ [v̇, v∗R]) + Pr (u < u∗
R |v ∈ [v̇, v∗R])u

∗
R − s (6)

< Pr (u ≥ u∗
R |v ∈ [v̇, v∗R] ) [(1− δ)v∗R + δEm] + Pr (u < u∗

R |v ∈ [v̇, v∗R])u
∗
R − s,

where v̇ :=
u∗
R−δm̄

1−δ
is the lowest common value that is accepted if the cutoff utility is u∗

R.

The first term in the first line of (6) stands for the possibility that this item generates a

higher utility than the consumer’s subsequent continuation value u∗
R, in which case it is

bought. The second term accounts for the possibility that the rejected item’s utility is

below u∗
R in which case the consumer continues. The inequality follows because E(u|u ≥

u∗
R, v = v̇) = u∗

R and E(u|u ≥ u∗
R, v = v∗R) = (1− δ)v∗R + δEm so that for all v′ ∈ [v̇, v∗R),

E(u|u ≥ u∗
R, v = v′) < (1− δ)v∗R + δEm.

The second line in (6) is smaller than u∗
R = (1− δ)v∗R + δm, if, and only if,

δ(Em−m) <
s

Pr (u ≥ u∗
R|v ∈ [v̇, v∗R])

,

which is certainly the case if δ < δ̂.

Thus, on a non-experimenting platform consumer 3 optimally first explores the item

in the top spot (which is the item bought by consumer 2). If that item has a utility

u ≥ u∗
R they will buy it and stop searching, while if it has a utility u < u∗

R they will

continue searching random items, will never return to the item on the top spot and will

also not inspect the item on the second spot that was rejected by consumer 2. The same

conclusion would hold if the platform put the rejected item with positive probability on

some spots: all these spots will be skipped in favour of inspecting random items and as

there are infinitely many of them, there will always be such items to inspect.

Let us then suppose that all consumers t = 1, ..., T − 1 first explore the item in the

top spot (which is the item bought by the consumer t − 1). If that item has a utility

u ≥ u∗
R consumer t will buy it and stop searching, while if it has a utility u < u∗

R they

will continue searching random items, never return to the item on the top spot, and also

not inspect any spot where an item that has been rejected by one or more of consumers

1, ..., T − 1 is placed with positive probability. It is then clear that it is optimal for

consumer T to follow the same search rule as all rejected items have an expected value

that is smaller than (1−δ)v∗R+δEm and therefore for each next search it would be better

to choose a random item than a previously rejected item.

Detailed calculations for the example in Section 3.

Assume, without loss of generality, that the product bought by consumer 5 happens to be

ranked first for consumer 7 if the platform doesn’t randomise the ranking for consumer
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7. Consider first that consumer 7 observes v = v̂− ε at their first search. After observing

this v the consumer updates the probability the platform is randomizing as

ρf(v)

ρf(v) + (1− ρ)
f(v)(F (v̂)−F (v∗R))

[1−F (v∗R)]
2

=
ρ

ρ+ (1− ρ)
F (v̂)−F (v∗R)

[1−F (v∗R)]
2

=: µL.

This is because the only way consumer 7 may observe v = v̂ − ε when the platform is

not randomizing is if consumer 5 buys such an item. For this to be the case it should be

that one of the two top-ranked items for consumer 5 had a value v′ ≤ v̂ − ε so that the

better of the two top-ranked items of consumer 5 has v = v̂ − ε. We can approximate

the probability that one of the items consumer 5 observed had a value v′ ≤ v̂ − ε by

(F (v̂) − F (v∗R))/(1 − F (v∗R)). Thus, the continuation value of making another search is

(for ε small) approximately

µL ([1− F (v̂)]E(v|v ≥ v̂) + F (v̂)v̂) + (7)

(1− µL)

[
E(v|v ≥ v̂)− (F (v̂)− F (v∗R))

2

(1− F (v∗R))
2 (E(v|v ≥ v̂)− v̂)

]
− s

because, if the platform does not randomize, consumer 7 only gets an item with v < v̂

on their next search with probability
(F (v̂)−F (v∗R))

2

(1−F (v∗R))
2 .

Consider next that consumer 7 observes v = v̂ + ε at their first search. The posterior

probability that the platform is randomizing after observing such a v is

ρf(v)

ρf(v) + (1− ρ) f(v)
1−F (v∗R)

[
1
2
+ 1

2

F (v̂)−F (v∗R)

1−F (v∗R)

] =
ρ

ρ+ 1−ρ
1−F (v∗R)

[
1
2
+ 1

2

F (v̂)−F (v∗R)

1−F (v∗R)

] =: µH .

This can happen if consumer 5 encounters an item with v = v̂+ε on their first search and

immediately buys it, or if consumer 5 first searches the other item with a value v ∈ [v∗R, v̂).

Thus, after observing a v = v̂ + ε, the continuation value of making another search for

consumer 7 is (for ε small) approximately

µH ([1− F (v̂)]E(v|v ≥ v̂) + F (v̂)v̂) + (8)

(1− µH)

[
E(v|v ≥ v̂)− (F (v̂)− F (v∗R))

2

(1− F (v∗R))
2 (E(v|v ≥ v̂)− v̂)

]
− s

We can now make the following observations. First, if ρ is close to 1, consumer 7 wants

to stop searching at their first search both when v = v̂ − ε and when v = v̂ + ε. The

reason is that the continuation value of search is very close to the continuation value of

search of consumers 1-4 and they have a reservation value strategy to stop searching if

v > v∗R. Second, if ρ is close to 0, consumer 7 always wants to continue searching both
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when v = v̂ − ε and when v = v̂ + ε. The reason is that the continuation value of search

is very close to

E(v|v ≥ v̂)− (F (v̂)− F (v∗R))
2

(1− F (v∗R))
2 (E(v|v ≥ v̂)− v̂)− s

and this is strictly larger than the continuation value of search of consumers 5 and 6 as

represented by the RHS of (2) as
F (v̂)−F (v∗R)

1−F (v∗R)
< 1.

Third, the continuation value of search after observing a v = v̂ + ε is strictly larger

than the continuation value of search after observing a v = v̂−ε, i.e., (8) is strictly larger

than (7), if the weight on the first term is larger in (7), i.e., µL > µH . This is the case if

1

2
+

1

2

F (v̂)− F (v∗R)

1− F (v∗R)
>

F (v̂)− F (v∗R)

1− F (v∗R)
,

which is always true as for any s > 0 we have F (v̂) < 1.

These three observations imply that there are values of ρ such that consumer 7 wants

to continue to search after observing a v = v̂+ε and wants to abort search after observing

a v = v̂ − ε.

Proof of Proposition 5.

We divide the proof into 4 steps for clarity.

(1) An interior v∗ exists and is unique if δ < δ̂. A consumer drawing the minimum

possible utility level given v ≥ v∗, (1− δ)v∗ + δm, buys if

(1− δ)v∗ + δm ≥ (1− δ)E(v|v ≥ v∗) + δEm− s,

which gives

v∗ ≥ E(v|v ≥ v∗) +
δ(Em−m)− s

1− δ
. (9)

Clearly inequality (9) can hold only if δ(Em−m) < s or δ < δ̂. We can write (9) as

v∗ ≥
∫ v̄

v∗
vg(v)dv

1−G(v∗)
+

δ(Em−m)− s

1− δ
=

v̄ − v∗G(v∗)−
∫ v̄

v∗
G(v)dv

1−G(v∗)
+

δ(Em−m)− s

1− δ

= v∗ +
v̄ − v∗ −

∫ v̄

v∗
G(v)dv

1−G(v∗)
+

δ(Em−m)− s

1− δ
.

Thus, we have that an interior v∗ is implicitly defined by

v∗ = v̄ −
∫ v̄

v∗
G(v)dv + (1−G(v∗))

δ(Em−m)− s

1− δ
. (10)
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Equation (10) can be rewritten as (4). Since the RHS of equation (4) is positive, we also

need the LHS to be positive for an interior v∗ to exist. Now

lim
v∗→v

∫ v̄

v∗

1−G(v)

1−G(v∗)
dv =

∫ v̄

v

1−G(v)dv = Ev − v > 0,

and

lim
v∗→v̄

∫ v̄

v∗

1−G(v)

1−G(v∗)
dv = lim

v∗→v̄

−(1−G(v∗))

−g(v∗)
=

0

g(v̄)
= 0,

as g(v̄) > 0. Thus, a sufficient condition for an interior solution for v∗ to exist is Ev−v >
s−δ(Em−m)

1−δ
or

(1− δ)(Ev − v) + δ(Em−m) > s.

This inequality holds because, by assumption, both Ev − v > s and Em−m > s.

A sufficient condition for v∗ to be uniquely defined is that the derivative of the LHS

of equation (4), or

∂

∂v∗

∫ v̄

v∗

1−G(v)

1−G(v∗)
dv = −1 +

∫ v̄

v∗

(1−G(v))g(v∗)

(1−G(v∗))2
dv, (11)

is negative for all v∗ ∈ (v, v̄). The derivative can be rearranged so that it is negative if

for all v∗

g(v∗)

∫ v̄

v∗

1−G(v)

1−G(v∗)
dv < 1−G(v∗). (12)

We show that inequality (12) holds because the RHS of the inequality decreases faster

than the LHS for all v∗ < v̄, while the two sides equal at v∗ = v̄. At v∗ = v̄, using

l’Hopital’s rule, the LHS equals g (v̄) −(1−G(v̄))
−g(v̄)

= g (v̄) · 0 = 0 and the RHS is also equal

to zero. Taking the derivative with respect to v∗ on both sides of inequality (12) gives

−g (v∗)
[
1−

∫ v̄

v∗
(1−G(v))g(v∗)

(1−G(v∗))2
dv
]
+ g′ (v∗)

∫ v̄

v∗
(1−G(v))
1−G(v∗)

dv for the LHS and −g (v∗) for the

RHS. Thus, the derivative of the LHS of (12) is larger than the derivative of the RHS if[
g2 (v∗)

1−G (v∗)
+ g′ (v∗)

] ∫ v̄

v∗

(1−G(v))

1−G (v∗)
dv > 0.

This is indeed the case if g2(v∗)
1−G(v∗)

+g′ (v∗) > 0 which follows from the fact that 1−G(v)

is logconcave: logconcavity implies that for the first and second derivative of ln(1−G(v))

we have −g
1−G

and −g′(1−G)−g2

(1−G)2
= −1

1−G

[
g′ + g2

1−G

]
≤ 0. In sum, an interior v∗ exists and is

unique if δ(Em−m) < s.

(2) The platform can never learn more than that v ≥ v∗. Learning more than that

v ≥ v∗ would require that consumers at some point reject items that have v∗ as their

common component, but we will show that items with a v ≥ v∗ will never be rejected by

consumers. Consumer t = 1 and t = 2 use a random cutoff rule u∗
R and all items with

a v ≥ v∗R are immediately accepted (that is, bought after being inspected). This implies

30



that all v ≥ v∗ are accepted as v∗ > v∗R. Suppose then by induction that all consumers up

to and including T accept all items with a v ≥ v∗. We will argue that then also all items

with a v ≥ v∗ are accepted by consumer T + 1. The only reason why consumer T + 1

would not want to accept some item with a v ≥ v∗ is that they become more positive

about observing an item with an even higher utility on their next search(es). But they

can only become more positive if they think that the platform may be able to distinguish

between items with a v ≥ v∗ based on choices of consumers t = 1, ..., T. But consumers

know this is not the case (because of the induction assumption).

(3) The platform can achieve limt→∞v1(t) ≥ v∗. We show that the platform can do

so by using the following algorithm:

(i) split consumers into cohorts j = 1, 2, ..., each of a fixed finite size K > 2,

(ii) show each consumer in cohort j = 1 a different ranking of infinite length that

contains randomly ordered items,

(iii) for each cohort j > 1,

– call items that at least one member of cohort j − 1 immediately bought after

the first inspection “qualifying items” and denote the number of them by kj−1;

– If kj−1 ∈ {0, 1}, restart the process at step (i) by treating cohort j like cohort

1: show cohort j a ranking of infinite length that contains randomly ordered

unrepeated items;

– if kj−1 ∈ {2, ..., K}, (a) rank the qualifying items on the top spots, (b) rotate

the first-ranked item so that all qualifying items are shown on rank 1 for at

least one consumer in cohort j, and show the other qualifying items randomly

on spots 2, ..., kj−1, (c) fill the spots kj−1 + 1 and kj−1 + 2 with copies of a

randomly drawn uninspected item and fill the j′ spots after the top kj−1 + 2

spots with copies of another randomly drawn uninspected item, where j′ is the

cohort with which the process was last restarted.

Consider first cohort j = 1. Clearly all consumers in cohort 1 use the random cutoff

u∗
R and purchase the first item they inspect with u ≥ u∗

R. Since each consumer of cohort

1 faces a different ranking, k1 = K.

Consider j = 2. All members of cohort 2 know that the top k1 ranks contain distinct

items where a consumer of cohort 1 drew u ≥ u∗
R. We first make two remarks on the

stopping problem of consumers in cohort 2.

First, consumers in cohort 2 can search over randomly ordered items outside the

platform at any point so their value of searching beyond rank k1 (excluding the recall

value) is u∗
R. Thus, they search beyond rank k1 only if for all the k1 ranked items u < u∗

R.

31



Second, after having seen the ranking and inspected any set of items, the consumer’s

belief about the distribution of common values of the remaining items is unchanged as

the platform ranks items in the qualifying set randomly (beyond the first rank).

As a result of these two observations, we can focus on the consumer’s optimal stopping

problem when they can make at most k1 independent draws from a utility distribution

truncated from below. Given that the consumer’s stopping problem does not involve

learning about the distribution of items in the ranking, the consumer’s optimal policy

can be calculated using the one-step-look-ahead rule.

In particular, for a consumer of cohort 2, after inspecting the first-ranked item and

uncovering utility u, the value of inspecting one more item, uncovering u′ and then

stopping with the better of the two items is

V (u) := P (u′ ≥ u|u′′ ≥ u∗
R)E(u′|u′ ≥ u, u′′ ≥ u∗

R) + P (u′ < u|u′′ ≥ u∗
R)u− s,

where u′ is the utility draw that the searching consumer gets for the next item and u′′

is the utility draw of the previous consumer who bought it. (A next such item to search

exists because k1 = K > 2.) The consumer is just indifferent between stopping with

u and continuing if u = u2 such that u2 = V (u2). The solution for u2 clearly satisfies

u2 > u∗
R. Thus, a consumer in cohort j = 2 will stop and purchase the first item among

the k1 top-ranked items if they find one with u ≥ u2. If not, they return to the item with

the highest u among the k1 inspected items if it exceeds u∗
R and continue searching over

randomly ordered items (on or off the platform) otherwise.

Some consumers in cohort 2 end up buying an item bought by some consumer in

cohort 1, with some buying after an initial inspection and some after returning (and

other members of cohort 2 may buy an item off the platform). Thus, after consumers in

cohort 2 have made their purchase decisions, some number k2 ≤ k1 of items qualify to be

shown to cohort 3 in the top k2 ranks: these were bought by consumers in both cohorts

1 and 2 and the consumers in cohort 2 bough them after first inspection. All of these

items had u ≥ u2 for consumers in cohort 2.

Consider j = 3. With cohort 3, two things can happen. If k2 < 2, then consumers

in cohort 3 are treated like cohort j = 1, i.e., shown an randomly ordered ranking of

unrepeated items, so the process is essentially restarted. Note that consumers in cohort

j′′ ≥ 4 (until the next restart) are then shown a ranking where the qualifying items (and

the two copies after these) are followed by j′ = 3 copies of one item so they know that

the process restarted last with cohort 3 and that they are treated like cohort j′′ − j′ + 1.

If, instead, k2 ≥ 2, then consumers in cohort 3 face a ranking where the top k2 items

satisfied u ≥ u2 for cohort 2. The consumers can infer k2 from the fact that an item

is copied on spots k2 + 1 and k2 + 2. In this case, the appropriately modified remarks

that we made for cohort 2 hold also for cohort 3. We can, thus, focus on the consumer’s
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optimal stopping problem when they can make at most k2 independent draws from a

utility distribution truncated from below. The truncation is given by the cutoff value

v2 > v∗R where v2 satisfies u2 = (1− δ)v2 + δm.

Thus, the reservation value to decide whether to buy the first-ranked item after initial

inspection of a consumer in cohort 3, u3, is derived analogously to u2. Explicitly, u3 solves

u3 = P (u ≥ u3|u′ ≥ u2)E(u|u ≥ u3, u
′ ≥ u2) + P (u < u3|u′ ≥ u2)u3 − s,

where u3 clearly satisfies u3 > u2.

By a similar argument, for any cohort j + 1 that is shown a ranking that contains

qualifying items, the cutoff utility uj+1 satisfies uj+1 > uj.

The only thing left to prove is that eventually as a result of this process, there are

at least two items with v ≥ v∗ uncovered by a cohort that faces a ranking that contains

no copies. Suppose otherwise: that either no or only a single item out of K have v ≥ v∗

conditional on having u ≥ u∗
R. Let the lowest possible v such that u ≥ u∗

R be denoted v̇ so

that v̇ := max{v∗R − δ(m̄−m)
1−δ

, 0}. Thus, the probability of the event of interest happening

for a single cohort that faces a ranking without copies is at most

ρK := P (v < v∗|v ≥ v̇)K +K × P (v ≥ v∗|v ≥ v̇)P (v < v∗|v ≥ v̇)K−1

=

(
F (v∗)− F (v̇)

1− F (v̇)

)K

+K
1− F (v∗)

1− F (v̇)

(
F (v∗)− F (v̇)

1− F (v̇)

)K−1

< 1.

If this happens for all cohorts that face a ranking that contains no copies, then the process

will always be restarted at some point, in total infinitely many times. But then an upper

bound on the total probability that no or only a single item of K have v ≥ v∗ conditional

on having u ≥ u∗
R goes to zero: limn→∞ ρnK = 0.

(4) The interior cutoff v∗ strictly increases in δ, decreases in s, and exceeds

v∗R. It is easy to show that the RHS of (4) decreases in δ and increases in s, but does not

depend on v∗. The LHS of (4) depends directly on neither δ nor s, but decreases in v∗

(by step (1)). These facts together establish that ∂v∗

∂δ
> 0 and ∂v∗

∂s
< 0.

Finally, we show that v∗ > v∗R if δ < δ̂. Recall that v∗R is defined in equation (1) for

δ < δ̂. For ease of reading, we let P (△) and P (□) denote the probabilities with which an

item has a utility either in the triangle or in the rectangle as indicated in Figure 1 (for

v̂ = v∗R):

P (△) :=

∫ v∗R

v̇

∫ m̄

m+
(1−δ)(v∗

R
−v)

δ

f(m)g(v)dmdv,

where, as in step (3), v̇ := max{v∗R − δ(m̄−m)
1−δ

, 0} denotes the lowest possible v such that

u = u∗
R, and P (□) := 1−G(v∗R). Then we can rewrite (1) as

(1− δ)v∗R + δm = P (□) [(1− δ)E(v|v > v∗R) + δE(m)] (13)
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+P (△)E(u|u ∈ △) + (1− P (△)− P (□)) [(1− δ)v∗R + δm]− s,

i.e., with probability P (□) (P (△)) the item’s u is “in the rectangle” (triangle) and the

consumer gets expected utility of u being in the rectangle (triangle). With the remaining

probability the product generates utility below u∗
R and the consumer continues with value

(1− δ)v∗R + δm.

Recall that for the experimenting monopolist, the cutoff v∗ is defined by

(1− δ)v∗ + δm = (1− δ)E(v|v ≥ v∗) + δE(m)− s. (14)

Now the LHS of (14) and (13) as functions of v∗R and v∗ respectively are identical. The

RHS of (13) is lower than in (14) for v∗R = v∗ as long as E(u|u ∈ △) < E(u|u ∈ □) =

(1− δ)E(v|v > v∗) + δE(m).

To show that E(u|u ∈ △) < E(u|u ∈ □) we argue that E(u|v = ṽ) increases in ṽ if ṽ

is in the support of the triangle, i.e., if ṽ ∈ [v̇, v∗]. Let m̃ := m+ (1−δ)(v∗−ṽ)
δ

. Then

E(u|v = ṽ) = (1− δ)ṽ + δE(m|m > m̃) = (1− δ)ṽ +
δ

1− F (m̃)

∫ m̄

m̃

mf(m)dm

= (1− δ)ṽ + δm̃+ δ

∫ m̄

m̃

1− F (m)

1− F (m̃)
dm = (1− δ)v∗ + δm+ δ

∫ m̄

m̃

1− F (m)

1− F (m̃)
dm,

where the one but last equality follows from integrating by parts. Now

∂E(u|v = ṽ)

∂ṽ
= (1− δ)

[
1−

∫ m̄

m̃

(1− F (m))f (m̃)

(1− F (m̃))2
dm

]
,

which is positive as long as the term in the squared brackets is positive. But showing

that this term is positive is analogous to showing that the expression in (11) is negative,

which we did in step (1). Thus, E(u|u ∈ △) < E(u|u ∈ □) and the solution to (13) is

smaller than for (14): v∗R < v∗.

Proof of Proposition 7.

The algorithm ranks items below the top spot randomly so that the consumers always

have a random continuation value u∗
R. To specify precisely which item the algorithm

puts on the top spot and when, if ever, to change it, we introduce some preliminaries.

Let the lowest acceptable level of the common component given u∗
R be denoted v̇, i.e.,

items with v < v̇ are not accepted even if the consumer gets the highest idiosyncratic

draw. Note that any item j with a common component vj ∈ [v̇, v̄] can be characterised

by m̃j ∈ [m, m̄] so that consumer t buys item j iff mtj ≥ m̃j, with probability Pr(mtj ≥
m̃j) = 1 − F (m̃j) =: pj, where pj ∈ (0, 1] due to the fact that s > 0. Thus, from the

platform’s perspective a consumer inspecting item j can be thought of as a Bernoulli trial
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with success probability pj. Note that m̃j decreases in vj. For vj = v̄ − η =: vη, denote

Pr(mtj ≥ m̃j) =: pη and for vj = v̄, denote Pr(mtj ≥ m̃j) =: pR. The proof focusses on

the nontrivial case where η is small so that v̇ < vη.

Below we show that the platform can achieve any desired combination of precisions

τ > 0 and η > 0. To do so, we will introduce three other errors ζ, α and ϵ, that must

(and can) be chosen small enough to achieve the desired τ (and η).

Each item j that has been inspected by n consumers is associated with the random

variable Xj that counts the number of consumers of n who bought j. Thus, Xj is a

binomially distributed random variable with parameters n and pj, Xj ∼ B(n, pj). The

parameter pj can be estimated by the realised proportion of purchases p̂j =
xj

n
. By the

central limit theorem, for n large enough, the sampling distribution of p̂j becomes arbi-

trarily close to the normal distribution with mean pj and variance
σ2
j

n
. More precisely,

the Berry-Esseen theorem adjusted for the binomial distribution shows that the maxi-

mal approximation error between the normal and the binomial distribution B(n, p) (as

measured by the Kolmogorov-Smirnov distance) is

sup
x∈R

∣∣∣∣∣Pr

(
Xj − npj√
npj(1− pj)

≤ p

)
− Φ(p)

∣∣∣∣∣ ≤ C[p2j + (1− pj)
2]√

npj(1− pj)
,

where Φ(p) is the cdf of the standard normal distribution and C =
√
10+3

6
√
2π

≈ 0.40973, a

constant (Schulz, 2016). The Berry-Esseen theorem implies that if the maximal tolerated

approximation error is some ζ > 0, then the approximation error is smaller than ζ if

n > n̄ζ , where

n̄ζ =
C2[p2j + (1− pj)

2]2

pj(1− pj)ζ2
.

Note that n̄ζ is finite for any pR ∈ (0, 1] because, with probability one, all the items that

have been bought at least once have v ∈ (v̇, v̄), thus, pj ∈ (0, 1). As a result, any desired

ζ > 0 can be achieved with a finite number of observations n by choosing n ≥ n̄ζ . We

will show later that a “small enough” ζ must be chosen to achieve a desired τ > 0.

We are now ready to introduce the algorithm:

1. Rank the item bought by consumer t = 1, denoted by A, on the top spot for the

next n′ − 1 consumers, where n′ > n̄ is a finite constant. Calculate the sample

mean p̂A(n
′). If the null hypothesis H0 : pA ≥ pη is not rejected with a significance

level α, keep item A on the top spot and move to consumer t = n′ + 1. Otherwise,

restart the process, calling the restart period t = 1 again.

2. For all t′ ≥ n′+1, calculate the sample mean p̂j(t
′) over the entire sample t = 1, ..., t′

where j was the item on the top spot. If the null hypothesis H0 : pj ≥ pη is not

rejected with a significance level α, keep item j on the top spot and move to

consumer t′ + 1. Otherwise, restart the process, calling the initial period t = 1.
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We now argue that this algorithm ensures that the platform finds out if the random

variable Xj associated with a top-ranked item j has a population mean pj close to the

target population mean pR, where “close to” is defined as pj ≥ pη. We formulate the

platform’s problem in the terminology of hypothesis testing: if the top-placed product is

j, the null hypothesis is H0 : pj ≥ pη, and the alternative hypothesis is H1 : pj < pη (so

the platform uses a lower-tail test). Denote the nominal significance level chosen by the

platform, i.e., the nominal probability of type I error, by α. Since the platform chooses

α, it can choose an α > 0 as small as it wants. We will show later that a “small enough”

α must be chosen to achieve a desired τ > 0.

The platform is interested in not rejecting H0 if H0 is true for the top-spot item (the

probability of which is affected by the platform’s chosen nominal probability of type I error

α and, as explained below, the normal-binomial approximation error ζ), and rejecting H0

if H0 is false for the top-spot item (the probability of which is affected by the nominal

probability of type II error β and the normal-binomial approximation error ζ).

We claim that, if n consumers (with n > n̄ζ) are shown item j first and the true

common component of j is vj ≥ vη, then with probability at least 1− α − ζ the sample

mean p̂j lies within the acceptance region and the null hypothesis is not rejected. In

particular, the approximation error ζ increases the probability of type I error (rejecting

H0 when H0 is true) the most if the difference in the normal cdf and the approximated

binomial cdf happens to be largest at the least favourable acceptance probability for H0.

The total probability of type I error is, thus, at most α + ζ. In other words, conditional

on an item with vj ≥ vη being ranked first, j will remain first with probability 1− α− ζ

for all sample sizes n′ ≥ n > n̄ζ .

The platform also wants to ensure that an item that is ranked on the top spot and

has v < vη is removed from the top spot with a high probability. In particular, we argue

that if the true mean of j is pj = pη − λ for some λ > 0, the nominal probability of type

II error, β, goes to zero if n increases for standard levels of α+ ζ. To do that, note that

the platform must use the t-test statistic in the hypothesis testing because each random

variable Xj associated with an item j s.t. vj ≥ vη has a different population variance σj

and, since the platform does not know exactly which item it is evaluating, it does not

know the population variance and, hence, the variance of the sampling distribution of

the sample mean of Xj that it faces. The probability of a type II error β (for a lower-tail

test) is given by β = Pr(p̂j > pη − tn−1,α
s√
n
|pj < pη) where s is the sample standard

deviation of Xj and tn−1,α the critical value. Thus, if the true population mean of Xj is

pj = pη − λ, the nominal probability of type II error is

β = Pr

(
t >

pη − tn−1,α
s√
n
− (pη − λ)

s/
√
n

)
= Pr

(
t >

λ

s/
√
n
− tn−1,α

)
.
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For n large enough, the critical value tn−1,α grows at a slower rate than
√
n, whereas λ

s/
√
n

grows in n at rate
√
n. Thus, β disappears as n increases.

Similarly to above, the approximation error ζ increases the total probability of a type

II error the most if the difference between the binomial and normal cdfs happens to be

largest at the most favourable acceptance probability for H0. Thus, the total probability

of type II error is at most β + ζ. Because β vanishes as n becomes large enough, a finite

number n̄β exists such that for all n ≥ n̄β, the total probability of type II error β + ζ

is at most ζ + ϵ for some ϵ > 0. The error ϵ > 0 can again be chosen to be as small as

desired by choosing n ≥ n̄β for the appropriate (finite) n̄β.

Altogether, by setting n′ > n̄ := max{n̄β, n̄ζ} in the algorithm, the platform ensures

that the first-ranked item has v ≥ v̄ − η with a probability at least 1− τ where τ solves

1−τ = Pr(vA ≥ vη|vA ≥ v̇)[(1−α−ζ)+(α+ζ)(1−τ)]+P (vA < vη|vA ≥ v̇)(1−ζ−ϵ)(1−τ).

If the first-bought item has vA ≥ vη, it remains ranked first with a probability at least

1 − α − ζ. If it is discarded, the process is started anew. If the first-bought item has

vA ∈ [v̇, vη), it is discarded with probability at least 1− ζ − ϵ, in which case the process

is started anew again. Solving this equation for τ gives

τ =
(G(vη)−G(v̇))(ζ + ϵ)

(1− α− ζ)(1−G(vη)) + (G(vη)−G(v̇))(ζ + ϵ)
.

Note that τ is affected by all α, ζ, and ϵ and recall that these can all be chosen as small

as the platform wants. In particular, for any desired η > 0, any τ > 0 can be chosen as

small as the platform wants by choosing ζ and ϵ small enough.

Proof of Proposition 8.

(i) The proof that consumers prefer inspecting to buying blindly if s < s̄(δ) is in the

text before the Proposition. What still must show that an algorithm exists that for every

η, τ > 0 achieves that the probability that limt→∞v1(t) ≥ v̄− η is at least 1− τ. In fact,

the platform can use the same algorithm that is specified in the proof of Proposition 7: all

consumers prefer inspecting to buying blindly and v∗R = v̄ so consumers behave exactly

the same way as when blind buying is not allowed if that algorithm is used.

(ii) Consider next that s > ŝR(δ).We first focus on δ = 0 (so that ŝR(δ) = 0) and consider

a small s > 0. Now the first consumer prefers to inspect (using the cutoff v∗R < v̄).

Suppose that the platform’s algorithm specifies that it ranks products randomly for the

first T1 consumers and then ranks the products bought by these first T1 consumers on

top spots in a random order for the next T2 consumers. After inspecting any number of

products less than T1, consumer t with T1 < t ≤ T1 + T2 has a continuation value ṽ that
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satisfies

ṽ =
1−G(ṽ)

1−G(v∗R)
E(v|v ≥ ṽ) +

G(ṽ)−G(v∗R)

1−G(v∗R)
ṽ − s. (15)

To prove that for sufficiently small search costs consumers t with T1 < t ≤ T1 +T2 would

prefer to continue inspecting highly-ranked items if they so far only found items with

a v < ṽ rather than blind buy and settle for E(v|v ≥ v∗R), we need to prove that for

sufficiently large T1 and for small s

E(v|v ≥ ṽ)− (1−G(v∗R)) s

1−G(ṽ)
> E(v|v ≥ v∗R),

or

(1−G(ṽ))E(v|v ≥ ṽ)− (1−G(v∗R)) s > (1−G(ṽ))E(v|v ≥ v∗R).

Taking the total differential, we need to prove that in a neighborhood of s = 0

−g(ṽ)ṽdṽ−(1−G(v∗R)) ds+g(v∗R)sdv
∗
R > (1−G(ṽ))

g(v∗R)s

(1−G(v∗R))
2dv

∗
R−g(ṽ)dṽE(v|v ≥ v∗R),

where we use the fact (1−G(ṽ))E(v|v ≥ ṽ) =
∫
ṽ
g(v)vdv. As

∫
ṽ
g(v)(v − ṽ)dv =

(1−G(v∗R)) s yields in a first-order approximation that− (1−G(ṽ)) dṽ = (1−G(v∗R)) ds−
g(v∗R)sdv

∗
R we have

−g(ṽ)ṽdṽ + (1−G(ṽ)) dṽ > (1−G(ṽ))
g(v∗R)s

(1−G(v∗R))
2dv

∗
R − g(ṽ)dṽE(v|v ≥ v∗R)

or [
1 +

g(ṽ)

(1−G(ṽ))
(E(v|v ≥ v∗R)− ṽ)

]
dṽ >

g(v∗R)s

(1−G(v∗R))
2dv

∗
R.

To show that this holds, it is sufficient to show that

lim
s→0

E(v|v ≥ v∗R)− ṽ

(1−G(ṽ))
= −∞,

as dṽ/ds and dv∗R/ds are negative and
g(v∗R)s

(1−G(v∗R))
2 is positive. So, the LHS would be

positive and the RHS would be negative. As

lim
s→0

E(v|v ≥ v∗R)− ṽ

(1−G(ṽ))
= lim

s→0

− g(v∗R)s

(1−G(v∗R))3
− ∂ṽ

∂s

−g(ṽ)∂ṽ
∂s

=
1

g(ṽ)

(
lim
s→0

g(v∗R)s

(1−G(v∗R))
3 ∂ṽ
∂s

+ 1

)

=
1

g(ṽ)
lim
s→0

1 +
−g(v∗R)s

(1−G(v∗R))
3
(

1−G(v∗R)

1−G(ṽ)
+

g(v∗R)s

(1−G(ṽ))
1

1−G(v∗R)

)
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=
1

g(ṽ)
lim
s→0

1− 1
(1−G(v∗R))4

(1−G(ṽ))g(v∗R)s
+

(1−G(v∗R))2

(1−G(ṽ))

 =
1

g(ṽ)
lim
s→0

1− 1
(g(v̄)(v̄−v∗R))4

g(v̄)(v̄−ṽ)g(v∗R)s
+

(g(v̄)(v̄−v∗R))2

g(v̄)(v̄−ṽ)

 ,

where the first step uses l’Hopital and the third step uses the fact that − (1−G(ṽ)) dṽ =

(1−G(v∗R)) ds− g(v∗R)sdv
∗
R and − (1−G(v∗R)) dv

∗
R = ds yields that in a neighborhood of

s = 0,
∂ṽ

∂s
= −(1−G(v∗R))

(1−G(ṽ))
− g(v∗R)s

(1−G(v∗R)) (1−G(ṽ))
.

Now, as s =
∫ v̄

v∗R
(1−G(v))dv =: h(v∗R), and we know that v∗R(s) = v̄ at s = 0 we can

give a second-order Taylor approximation of h(v∗R) in a neighborhood of v̄ as

h(v∗R) = 0+(1−G(v̄))(v̄−v∗R)+
1

2
g(v̄)(v̄−v∗R)

2+o
(
(v̄ − v∗R)

2
)
=

1

2
g(v̄)(v̄−v∗R)

2+o
(
(v̄ − v∗R)

2
)
,

where o(·) is Laudau’s little-o notation. Thus, we have that in a neighborhood of s = 0,

v̄ − v∗R =

√
2s

g(v̄)
+ o(

√
s).

Similarly, as
∫ v̄

ṽ
(1−G(v))dv =: h(ṽ) we have that the second-order Taylor approximation

of h(ṽ) in a neighborhood of v̄ is

h(ṽ) =
1

2
g(v̄)(v̄ − ṽ)2 + o

(
(v̄ − ṽ)2

)
,

so that in a second-order approximation
∫ v̄

ṽ
(1−G(v))dv = (1−G(v∗R)) s yields

1

2
g(v̄)(v̄ − ṽ)2 + o

(
(v̄ − ṽ)2

)
= g(v̄)s

(√
2s

g(v̄)
+ o(

√
s)

)

or

v̄ − ṽ =

√√√√2s

√
2s

g(v̄)
+ o(s

√
s).

Thus,

lim
s→0

E(v|v ≥ v∗R)− ṽ

(1−G(ṽ))
=

1

g(ṽ)
lim
s→0

(
1−

[
(g(v̄)(v̄ − v∗R))

4

g(v̄)(v̄ − ṽ)g(v∗R)s
+

(g(v̄)(v̄ − v∗R))
2

g(v̄)(v̄ − ṽ)

]−1
)

=
1

g(ṽ)
lim
s→0

1−

[
o(s2)

o(s1
3
4 )

+
o(s)

o(s
3
4 )

]−1
 = −∞.

We next consider that δ > 0 and small and argue that the platform can use the same

algorithm. If a consumer t, T1 < t ≤ T1 + T2, inspects products they want to continue to
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search if they find a u < ũ on the first search, where ũ is implicitly defined by

ũ =
1−Hδ(ũ)

1−Hδ(u∗
R)

E(u|u ≥ ũ) +
Hδ(ũ)−Hδ(u

∗
R)

1−Hδ(u∗
R)

ũ− s.

For sufficiently large T1 the pay-off of buying blindly equals (1− δ)E(v|u ≥ u∗
R)+ δE(m).

Thus, it is clear that for sufficiently large T1 and for small s we have that consumers

t > T1 would like to inspect products, instead of buying blindly, if

E(u|u ≥ ũ)− (1−G(u∗
R)) s

1−G(ũ)
> (1− δ)E(v|u ≥ u∗

R) + δE(m).

Above we proved this to be the case for δ = 0 and s in a right-neighborhood of ŝR(0).

As both the LHS and the RHS are continuous in δ this inequality must also hold for δ

close enough to 0 and s in a right-neighborhood of ŝR(δ). Thus, using the algorithm, the

platform learns more than the random cutoff, v̂ > v∗R for these parameters.

Finally, we show that the platform can no longer achieve the cutoff v∗ for any combina-

tion of δ and s such that v∗ < v̄, i.e., if δ < δ̂. Recall that v∗ is such that u∗ = (1−δ)v∗+δm

and without blind buying all items are accepted in the long run (as t → ∞). The cutoff

v∗ is the highest possible cutoff that can be reached when blind buying is allowed because

the platform can learn weakly less when blind buying is allowed versus prohibited. Sup-

pose that the platform can reach the cutoff v∗ in the long run and consider a t = T so

large that the top-ranked item has almost surely v ≥ v∗. Then consumers t > T expect

to get a utility (almost) equal to E(u|v > v∗) − s by inspecting and E(u|v > v∗) by

buying blindly. Thus, all consumers t > T , i.e., sufficiently far in the queue, prefer to

buy blindly and the platform cannot identify items with v ≥ v∗ for v∗ < v̄.

Proof of Proposition 9.

(i) First consider that consumers do not know market shares and δ < δ̂. We show that a

platform always has an incentive to “experiment less” than the competitor. An important

part of the proof is to consider what “experimenting less” means. By Lemma 2 a platform

never prominently ranks items that have been inspected and not bought. Thus, the only

question is how platforms rank uninspected items versus the items that have been bought

in the past and subsequently never rejected (call these item Bs). Note that as long as a

platform does not experiment, there is only one item B on that platform. We say that

platform 1 “experiments first at t” if in period t platform 1 ranks the only item B on the

top spot with a probability less than one.

We first show that, all else equal, a consumer prefers a ranking where an item B is on

a single position with probability one rather than a ranking where item B is on position

k with probability π > 1/2 and another position k′ with probability 1− π. To see that,

let us consider the expected value that the consumer receives from searching through the
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latter ranking. Once the consumer draws an item with utility u, their value function is

V (u) = max{u,Eu′ [V ′(u′)]} − s,

where V and V ′ can differ because the consumer searches through the ranking in a

particular order. Note that V (u) is convex. Before drawing u, the expected value from

searching through the ranking starting with positions k and k′ is

Eu[V (u)] = πE[max{u, VR(u
′)}|u ∈ △ ∪□] + (1− π)E[max{u, V ′′(u′)}]− s,

where V ′′(u′) = max{u′, E[VR(u
′′)|u ∈ △ ∪ □]} − s. The expression can be read as

follows. With probability π, the consumer inspects item B first (since it is on position

k) in which case they know that it is either in the “triangle” or “rectangle” because it

has been bought before. The consumer accepts B if it is better than continuing search.

If they reject B, they know that the rest of the items in the ranking are randomly drawn

uninspected items and VR is defined as the value of searching over these. With probability

1 − π, a random item is on position k and the consumer knows that item B is on the

next-searched position k′ so their continuation value takes that into account. The fact

that V (u) is convex and expectation is a linear operator imply that Eu[V (u)] is convex,

too. But then the expected value Eu[V (u)] is higher if outcomes are more spread, i.e., at

π = 1 rather than an interior π. Thus, a consumer prefers a ranking that places item B

on a single position with probability one rather than on two positions with some interior

probabilities. By an analogous argument, a consumer prefers a ranking that places an

item B on a single position with probability one rather than on more than two positions

with some interior probabilities.

Now we show that if platform 1 experiments with a positive probability, then platform

2 wants to undercut it. Suppose that neither platform experiments at t < τ and platform

1 experiments with a positive probability at τ : platform 1’s ranking places item B on

the top spot with a probability πτ < 1 at t = τ . We claim that platform 2 benefits from

deviating to a ranking that at τ experiments with probability π′
τ < πτ .

Since consumer t = 1 expects both platforms to make equally good recommendations,

the consumer is indifferent between them. Consumer t = 2 then expects both platforms

to have attracted the same number of consumers at t = 1. Thus, consumer 2, too, is

indifferent between the platforms because they expect the platforms to make equally good

recommendations. This is true for all consumers t < τ . Now consider consumer τ . They

know that platform 1 experiments and, as we showed above, strictly prefers searching on

platform 2 if it experiments less at τ . Thus, platform 2 has an incentive to post a ranking

that at τ experiments with a slightly lower probability than πτ , for two reasons. First,

it attracts consumer τ . Second, platform 2 learns (almost) the maximal amount that
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it would have learned if it had experimented with any other probability π̂τ : if π̂τ > πτ ,

platform 2 expected to learn nothing at τ as consumer τ would have searched on platform

1; if π̂τ < πτ , platform 2 would have attracted consumer 2, but learned less.

As a result of this deviation, consumer τ + 1 strictly prefers platform 2 (if it expects

the platforms to experiment the same amount at τ+1) because they know that platform 2

has attracted one additional consumer (in expectations) and likely makes them a better

recommendation. Platform 2, thus, strictly benefits from undercutting platform 1 in

terms of experimentation in all τ where platform 1 experiments with a positive probability.

Thus, the only potential equilibrium is where no platform experiments. To see that

this constitutes an equilibrium, consider a deviation by platform 1 to an algorithm that

experiments first with some consumer τ ≥ 2 (as platforms experiment with consumer

τ = 1 by definition). By a similar argument as above, any consumer τ ≥ 2 strictly

prefers a platform that doesn’t experiment to platform 1. Thus, this deviation is not

profitable and limt→∞vi1(t) ≥ v∗R.

(ii) Now suppose that consumers know market shares. To simplify the argument, but

without loss of generality, assume that there are two platforms and that a consumer

who is indifferent between platforms breaks their indifference by using the platform that

has served more consumers in the past. We show that a monopoly emerges and the

monopolist can learn as much as in the monopoly model.

The algorithm that any platform can use to achieve limt→∞v1(t) ≥ v∗ with probability

a half is the following:

(i) If at t an equal number of past consumers have used the two platforms or fewer

past consumers have used platform i, rank items according to their posterior vs.

(ii) If at t, more past consumers have used platform i, use the same algorithm as in the

monopoly case (specified in the proof of Proposition 5, on p. 31 for δ < δ̂ and in

the proof of Proposition 7, on p. 35 for δ ≥ δ̂).

Without loss of generality, suppose that consumer 1, who is indifferent between the

platforms, uses platform 1. Now consider consumer 2. If δ < δ̂, both platforms have a

fully random ranking, so consumer 2 uses platform 1 (because of the tie-breaking rule). If

δ ≥ δ̂, platform 2 has a fully random ranking, while platform 1 ranks the item bought by

consumer 1 on the top spot so consumer 2 strictly prefers to go to platform 1. By a similar

argument, for all consumers t ≥ 3, either platforms 1 and 2 offer fully random rankings

(platform 1 when it has restarted its process and the consumer belongs to cohort one and

platform 2 because it has not attracted any consumers) and consumer t uses platform 1

(because of the tie-breaking rule) or platform 1 offers a strictly better ranking (containing

at least on the top spot an item that has a higher expected inspection value than u∗
R,

while platform 2’s ranking is fully random) and consumer t strictly prefers to use platform
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1. Thus, the initial consumer determines fully which platform gains the entire market

(here, platform 1) and, because this platform can use the same algorithm as the monopoly

platform, it learns as much as under monopoly. The platform that does not get the first

consumer cannot deviate to a better ranking algorithm simply because it can never offer

a better than fully random ranking if it does not attract at least a single consumer.
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